快速成型技术的应用与发展前景一.什么是快速成型技术快速成形技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
即,快速成形技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。
二.快速成型技术的产生背景(1)随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。
在这种情况下,自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。
(2)制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。
因此,产品的开发速度和制造技术的柔性就十分关键。
(3)从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。
三.快速成形技术的特点快速成型技术具有以下几个重要特征:l )可以制造任意复杂的三维几何实体。
由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。
越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。
2 )快速性。
通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。
从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。
3 )高度柔性。
无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件。
4)技术高度集成性。
RP技术是计算机、数控、激光、材料和机械等技术的综合集成。
CAD技术通过计算机进行精确的离散运算和繁杂的数据转换,实现零件的曲面或实体造型,数控技术为高速精确的二维扫描提供必要的基础,这又是以精确高效堆积材料为前提的,激光器件和功率控制技术使材料的固化、烧结、切割成为现实。
快速扫描的高分辨率喷头为材料精密堆积提供了技术保证术产生背景。
5)快速响应性。
快速原型零件制造从CAD设计到原型 (或零件 )的加工完毕,只需几个小时至几十个小时,复杂、较大的零部件也可能达到几百小时,但从总体上看,速度比传统成形方法要快得多。
尤其适合于新产品的开发,RP技术已成为支持并行工程和快速反求设计及快速模具制造系统的重要技术之一到加工区域,工作台上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚,再在新层上切割截面轮廓。
如此反复直至零件的所有截面粘接、切割完,得到分层制造的实体零件。
LOM的特点:LOM工艺只须在片材上切割出零件截面的轮廓,而不用扫描整个截面。
因此成形厚壁零件的速度较快,易于制造大型零件。
工艺过程中不存在材料相变,因此不易引起翘曲变形,零件的精度较高,小于0.15mm。
工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以LOM工艺无需加支撑。
<三>.选择性激光烧结选择性激光烧结SLS(Selective Laser Sintering)工艺,常采用的材料有金属、陶瓷、ABS塑料等材料的粉末作为成形材料。
其工艺过程是:利用粉末状材料成形的。
将材料粉末铺洒在已成形零件的上表面,并刮平;用高强度的CO2激光器在刚铺的新层上扫描出零件截面;材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成形的部分连接;当一层截面烧结完后,铺上新的一层材料粉末,选择地烧结下层截面。
选择性烧结SLS的工艺特点:熔融材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件。
特别是可以制造金属零件。
这使SLS工艺颇具吸引力。
SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
其缺点是:成形件结构疏松多孔,表面粗糙度较高;成形效率不高;得到的塑料、陶瓷或金属件远不如传统成形方法得到的同类材质工件,需进行渗铜等后处理,但在后处理中难于保证制件尺寸精度沉积成形<四>.熔融沉积制造(丝状材料选择性融覆)FDM工艺熔融乘积制造FDM(Fused Deposition Manufacturing)工艺又称为熔丝沉积制造, FDM的材料一般是热塑性材料,如蜡、ABS、尼龙等。
以丝状供料。
材料在喷头内被加热熔化。
喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出;材料迅速凝固,并与周围的材料凝结。
如果热熔性材料的温度始终稍高于固化温度,而成型的部分温度稍低于固化温度,就能保证热熔性材料挤喷出喷嘴后,随即与前一个层面熔结在一起。
一个层面沉积完成后,工作台按预定的增量下降一个层的厚度,再继续熔喷沉积,直至完成整个实体造型。
FDM特点:a.系统及运行成本: FDM工艺无需其他快速成形系统中昂贵的关键部件-激光器,故MEM快速成形控制系统成本较低;成形材料相对其他快速成形系统价格低廉;MEM原型特有空隙结构,节约材料与成形时间。
b. 后处理:原型后处理简单,方便。
C.工艺适用范围: FDM工艺适用于薄壳体零件及微小零件,如电器外壳、手机外壳、玩具等,都是现代社会比较实用流行的用品;而且原型强度比较好,近似于实际零件,可以作为概念型直接验证设计。
六.快速成形技术的应用<一>.用于新产品的设计与试制。
1. CAID应用: 工业设计师在短时间內得到精确的原型与业者作造形研讨。
2.机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作3.CAE功效: 快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。
4.视觉效果(visualization) :设计人員能在短时间之內便能看到设计的雛型,可作为进一步研发的基石。
5.设计确认(verification): 可在短时间內即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。
6.复制于最佳化设计(iteration & optimization) :可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间內完成设计的最佳化。
7.直接生产(fabrication): 直接生产小型工具,或作为翻模工具<二>.快速制模及快速铸造快速模具制造传统的模具生产时间长,成本高。
将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。
快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具<三>.机械制造由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。
有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。
<四>.医疗中的快速成形技术在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。
以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。
<五>.三维复制快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。
<六>.航空航天技术领域航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。
<七>.家电行业快速成形系统在国内的家电行业上得到了很大程度的普及与应用,使许多家电企业走在了国内前列。
如:广东的美的、华宝、科龙;江苏的春兰、小天鹅;青岛的海尔等,都先后采用快速成形系统来开发新产品,收到了很好的效果。
快速成形技术的应用很广泛,可以相信,随着快速成形制造技术的不断成熟和完善,它将会在越来越多的领域得到推广和应用。
七.快速成型技术的发展方向从目前RP技术的研究和应用现状来看,快速成型技术的进一步研究和开发工作主要有以下几个方面:(1)开发性能好的快速成型材料,如成本低、易成形、变形小、强度高、耐久及无污染的成形材料。
(2)提高RP系统的加工速度和开拓并行制造的工艺方法。
(3)改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,尤其是提高成形件的精度、表面质量、力学和物理性能,为进一步进行模具加工和功能实验提供基础。
(4)开发快速成形的高性能RPM软件。
提高数据处理速度和精度,研究开发利用CAD原始数据直接切片的方法,减少由STL格式转换和切片处理过程所产生精度损失。
(5)开发新的成形能源。
(6)快速成形方法和工艺的改进和创新。
直接金属成形技术将会成为今后研究与应用的又—个热点。
(7)进行快速成形技术与CAD、CAE、RT、CAPP、CAM以及高精度自动测量、逆向工程的集成研究。
(8)提高网络化服务的研究力度,实现远程控制。
八.快速成型技术在今后发展中面临的问题目前RP技术还是面临着很多问题,问题大多来自技术本身的发展水平,其中最突出的表现在如下几个方面。
工艺问题快速成型的基础是分层叠加原理,然而,用什么材料进行分层叠加,以及如何进行分层叠加却大有研究价值。
因此,除了上述常见的分层叠加成形法之外,正在研究、开发一些新的分层叠加成形法,以便进一步改善制件的性能,提高成形精度和成形效率。
材料问题成型材料研究一直都是一个热点问题,快速成型材料性能要满足:①有利于快速精确的加工出成型;②用于快速成型系统直接制造功能件的材料要接近零件最终用途对强度、刚度、耐潮、热稳定性等要求;③有利于快速制模的后续处理。
发展全新的RP材料,特别是复合材料,例如纳米材料、非均质材料、其他方法难以制作的材料等仍是努力的方向。
精度问题目前,快速成形件的精度一般处于±0.1 mm的水平,高度(Z)方向的精度更是如此。
快速成型技术的基本原理决定了该工艺难于达到与传统机械加工所具有的表面质量和精度指标,把快速成型的基本成形思想与传统机械加工方法集成,优势互补,是改善快速成型精度的重要方法之一[3]。
软件问题目前,快速成型系统使用的分层切片算法都是基于STL文件格式进行转换的,就是用一系列三角网格来近似表示CAD模型的数据文件,而这种数据表示方法存在不少缺陷,如三角网格会出现一些空隙而造成数据丢失,还有由于平面分层所造成的台阶效应,也降低了零件表面质量和成形精度,目前,应着力开发新的模型切片方法,如基于特征的模型直接切片法、曲面分层法,即:不进行STL格式文件转换,直接对CAD模型进行切片处理,得到模型的各个截面轮廓,或利用反求工程得到的逐层切片数据直接驱动快速成型系统,从而减少三角面近似产生的误差,提高成形精度和速度。