钛合金及其热解决工艺简述宝鸡钛业股份有限公司:杨新林摘要:本文对钛及其合金基本信息进行了简要简介,对钛几类固溶体划分进行了简述,对钛合金固态相变也进行了概述。
重点概述了钛合金热解决类型及工艺,为之后生产实习中对钛合金热解决工艺结识提供指引。
核心词:钛合金,热解决1 引言钛在地壳中蕴藏量位于构造金属第四位,但其应用远比铜、铁、锡等金属滞后。
钛合金中溶解少量氧、氮、碳、氢等杂质元素,使其产生脆性,从而妨碍了初期人们对钛合金开发和运用。
直至二十世纪四五十年代,随着英、美及苏联等国钛合金熔炼技术改进和提高,钛合金应用才逐渐开展[5]。
纯钛熔点为1668℃,高于铁熔点。
钛在固态下具备同素异构转变,在882.5℃以上为体心立方晶格β相,在882.5℃如下为密排六方晶格α相。
钛合金依照其退火后室温组织类型进行分类,退火组织为α相钛合金记为TAX,也称为α型钛合金;退火组织为β相钛合金记为TBX,也称为β型钛合金;退火组织为α+β两相钛合金记为TCX,也称为α+β型钛合金,其中“X”为顺序号。
国内当前钛合金牌号已超过50个,其中TA型26个,TB型8个以上,TC型15个以上[5]。
钛合金具备如下特点:(1)与其她合金相比,钛合金屈强比很高,屈服强度与抗拉强度极为接近;(2)钛合金密度为4g/cm3,大概为钢一半,因而,它具备较高比强度;(3)钛合金耐腐蚀性能优良,在海水中其耐蚀性甚至比不锈钢还要好;(4)钛合金导热系数小,摩擦系数大,因而机械加工性不好;(5)在焊接时,钛合金焊缝金属和高热影响区容易被氧、氢、碳、氮等元素污染,使接头性能变坏。
在熔炼和各种加工过程完毕之后,为了消除材料中加工应力,达到使用规定性能水平,稳定零件尺寸以及去除热加工或化学解决过程中增长有害元素(例如氢)等,往往要通过热解决工艺来实现。
钛合金热解决工艺大体可分为退火、固溶解决和时效解决三个类型。
由于钛合金高化学活性,钛合金最后热解决普通在真空条件下进行。
热解决是调节钛合金强度重要手段之一。
2 钛合金合金化特点钛合金性能由Ti同合金元素间物理化学反映特点来决定,即由形成固溶体和化合物特性以及对α⇔β转变影响等来决定。
而这些影响又与合金元素原子尺寸、电化学性质(在周期表中相对位置)、晶格类型和电子浓度等关于。
但作为Ti合金与其他有色金属如Al、Cu、Ni 等比较,尚有其独有特点,如:(1)运用Tiα⇔β转变,通过合金化和热解决可以随意得到α、α+β和β相组织;(2)Ti是过渡族元素,有未填满d电子层,能同原子直径差位于±20%以内置换式元素形成高浓度固溶体;(3)Ti及其合金在远远低于熔点温度中能同O、N、H、C等间隙式杂质发生反映,使性能发生强烈变化;(4)Ti同其他元素能形成金属键、共价键和离子键固溶体和化合物。
Ti合金合金化重要目是运用合金元素对α或β相稳定作用,来控制α和β相构成和性能。
各种合金元素稳定作用又与元素电子浓度(价电子数与原子比值)有密切关系,普通来说,电子浓度不大于4元素能稳定α相,电子浓度不不大于4元素能稳定β相,电子浓度等于4元素,既能稳定α相,也能稳定β相。
工业用Ti合金重要合金元素有Al、Sn、Zr、V、Mo、Mn、Fe、Cr、Cu和Si等,按其对转变温度影响和在α或β相中固溶度可以分为三大类:α稳定元素、β稳定元素、中性元素[6,7]。
α稳定元素能提高相变点,在α相中大量溶解和扩大α相区。
例如铝、镓、硼、碳、氧、氮等。
这其中,铝在配制合金中得到了广泛应用。
铝固溶强化效果最明显,还可提高合金高温强度,提高α+β型合金时效能力,改进合金抗氧化性,减小合金密度,提高弹性模量。
β稳定元素能减少相变温度,在β相中大量溶解和扩大β相区。
其中铝、钒、铌、钽、钨等属于β同晶型,在β钛中可以无限固溶,而铁、锰、钴、镍、铜、硅等,在β钛中只形成有限固溶体,在含量相似时,它们固溶强化效果不不大于同晶型β稳定元素固溶强化效果。
就氧而言,Ti-6Al-4V(TC4)依照碳、氧、氮、氢等元素含量不同有工业级(含氧0.16%~0.20%wt)和ELI级(超低间隙,含氧0.1%~0.13%wt)。
由于氧元素为α稳定元素,使得合金β转变温度发生变化,对工业级而言,为1010~1020℃,对ELI级为970~980℃[8]。
中性元素在实用含量范畴内,对p相向a相似素异晶转变温度影响不大,在α和β相中均能大量溶解或完全互溶。
中性元素重要有锡、锆、铪。
α稳定型二元相图、β稳定型二元相图及β共析型二元相图分别如图1~图3。
3 钛合金固态相变纯Tiβ→α转变,是体心立方晶格向密排六方晶格转变,完全符合Burgers 取向关系:(110)β//(0001)α,[111]β//[1120 ]α;惯习面是(331)β,或(8811)α、(8912)α。
但Ti合金因合金系、浓度和热解决条件不同,还会浮现一系列复杂相变过程。
这些相变可归纳为两大类,即淬火相变:β→α′,α′′,ωq ,βγ和回火相变:(α′,α′′,β) →β+ωq+α→β+αγ3.1 马氏体转变β稳定型Ti合金自β相区淬火,会发生无扩散马氏体转变,生成过饱和α′固溶体。
如果合金浓度高,马氏体转变点Ms减少到室温如下,β相将被冻结到室温。
这种β相称“残留β相”或“过冷β相”,用β表达。
值得阐明是,当合金γβ相稳定元素含量少,转变阻力小,β相可由体心立方晶格直接转变为密排六方晶格,这种马氏体称“六方马氏体”,用“α”表达。
如果β稳定元素含量高,转变阻力大,不能直接转变成六方晶格,只能转变为斜方晶格,这种马氏体称“斜方马氏体”,用α′′表达(图4)。
六方马氏体有两种惯习面。
以{334}β面为惯习面马氏体(浓度低,Ms 高),称{334}型六方马氏体,取向关系为(0001)α′//{110}β,(1120)α′// 〈111〉β;以{334}β面为惯习面马氏体称{334}型六方马氏体(浓度高,Ms 点低),取向关系仍为(0001)α′//{110}β,〈1120〉α′//〈111〉β。
斜方马氏体惯习面为{133}β,取向关系为(001)α′//{110}β,〈110〉α′′//〈111〉β。
Ti 合金马氏体转变如图4所示,与β相浓度和转变温度有密闭关系。
由图可知,马氏体转变温度Ms 是随合金元素含量增长而减少,当合金浓度增长到临界浓度Ck,Ms点即减少到室温,β相即不再发生马氏体转变。
同样,成分已定合金,随着淬火温度减少,β相浓度将沿β(β+α)转变曲线升高(浓度沿曲线向右方移动),当淬火温度减少到一定温度,β相浓度升高到Ck时,淬火到室温β相也不发生马氏体转变,这一温度称“临界淬火温度”,可用Tc表达。
Ck 和Tc在讨论Ti合金热解决和组织变化时,是非常重要两个参数。
马氏体形态与合金浓度和Ms高低关于。
六方马氏体有两种形态,合金元素含量低(图4),马氏体转变温度Ms高时,形成板条状马氏体。
这种六方马氏体有大量位错,但基本上没有孪晶,是单晶马氏体。
反之,合金元素含量高,Ms 点减少,形成针状或锯齿形马氏体。
这种六方马氏体有高位错密度和层错,尚有大量{1011}c′孪晶,是孪晶马氏体。
斜方马氏体α′′,由于合金元素含量更高,Ms点更低,马氏体针更细,可以看到更密集孪晶。
但应指出,Ti合金马氏体是置换型过饱和固溶体,与钢间隙式马氏体不同,强度和硬度只比α相略高些,强化作用不明显。
当浮现斜方马氏体时,强度和硬度特别是屈服强度反而略有减少。
Ti合金浓度超过临界浓度Ck(图4),但又不太多时,淬火后会形成亚稳定过冷βγ相。
这种不稳定βγ相,在应力(或应变)作用下能转变为马氏体。
这种马氏体称“应力感生马氏体”,屈服强度很低,但有高应变硬化率和塑性,有助于均匀拉伸成型操作。
3.2ω相形成β稳定型Ti合金成分位于临界浓度ck 附近时,如Blackburn阐明图所示(图4),淬火时除了形成α′或βγ外,还能形成淬火ω相,用ωq表达。
ωq是六方晶格,a=0.4607nm,c=0.2821nm,c/a=0.613,与β相共生,并有共格关系。
β→ωq是无扩散转变,无论如何快冷也不能被制止,与β相取向关系:[0001]β//[111]ω,(1120)ω//(110)β。
ω相形状与合金元素原子半径关于,原子半径与Ti相差较小合金,ω相是椭圆形,半径相差较大时是立方体形。
β相浓度远远超过临界浓度(Ck)合金,淬火时不浮现ω相,但在200~500℃回火,βγ可以转变为ω相。
这种ω相称回火ω相或时效ω相,用ωq表达。
ωq 相形接是无扩散过程,但长大要靠原子扩散,是β→α转变过渡相。
由500℃如下回火形成ωq相,是由于不稳定过冷βγ相在回火过程中发生了溶质原子偏聚,形成溶质原子富集区和贫化区,当贫化区浓度接近Ck时即转变为ωq。
ω相硬并且脆(HB=500,δ=0),虽能明显提高强度、硬度和弹性模量,但塑性急剧减少。
当ω相体积分数Fv>80%,合金即完全失去了塑性;如果Fv控制在50%左右,合金会有较好强度和塑性配合。
ω相是Ti合金有害组织,在淬火和回火时都要避开它形成区间,但加Al 能抑制ω相形成。
大多数工业用Ti合金都具有Al,故回火ωq相普通很少浮现或体积分数Fv很小。
3.3亚稳定相分解钛合金淬火形成α′、ω和βγ相都是不稳定,回火时即发生分解。
各种相分解过程很复杂,但分解最后产物都是平衡α+β相。
如果合金是β共析型,分解最后产物将是α+TixMy 化合物。
但应阐明,这种共析分解在一定条件下可以得到弥散α+β相,有弥散硬化作用,是Ti合金时效硬化重要因素。
各种亚稳定相分解过程如下。
(1)过冷βγ相分解有两种分解方式:βγ→α+βx →α+βe βγ→ωq + βx →ωq +α+βx →α+βe式中ωq是回火ω相;βx是浓度比βγ高β相,βe浓度β相。
高温回火,可以越过形成ωq过渡阶段,直接按第一种反映式进行;如果回火温度低,则按第二种反映式发生分解:βγ先析出ωa,使βγ相浓度升高到βx,随后ωa再分解出α,使βx浓度升高到βe,最后变成α+βe。
(2)马氏体分解。
马氏体在300~400℃即能发生迅速分解,但在400~500℃回火可获得弥散度高α+β相混合物,使合金弥散强化。
实验研究表白,马氏体要通过许多中间阶段才干分解为平衡α+β或α+ TixMy。
X射线构造分析发现,各种Ti合金马氏体(α′,α′′)有三四种过渡分解阶段。
现举两种典型分解过程如下,第一种:α′′→βs+αd′′→βs +α′→α+β分解过程是先从α′′中析出β s(非平衡成分),使α′′中β稳定元素贫化变成αd′′,然后转变为α′,再转变为α。
另一种典型分解过程为:α′′→α+αc′′→α+ βs →α+β这个分解过程是无从α′′中析出α,使α′′所含β稳定元素富化成αc′′,然后再转变为βs和β相。