当前位置:文档之家› 空气动力学PPT

空气动力学PPT


翼型的升力与攻角


要有升力,翼型则必 须要有攻角或是弯度。 有弯度的翼型,其零 升攻角不为零,也就 是说在攻角为0度时, 有中弧线的翼型有升 力。 而对称翼不具有中弧 线,所以在攻角为0度 时没有升力,必须要 有攻角,翼型才能提 供升力。如图所示。
二、飞机的运动参数(续)
偏航角与侧滑角


侧滑角,drift angle,yaw angle是速度矢量V与导弹 纵向对称平面之间的夹角, 是速度坐标系与弹体坐标 系之间的关系; 偏航角是导弹纵轴在水平 面上投影与地面坐标系Ax 轴(在水平面上,指向目 标为正)之间的夹角,是 地面坐标系与弹体坐标系 之间的角度关系。

ogyg y og ogzg
2.机体坐标系(体轴系)S-oxyz 原点o —飞机质心 ox —飞机机身纵向轴线,处于飞机对称平面内 oy —垂直于飞机对称平面,指向右方 oz —在飞机对称平面内,垂直于ox向下, 描述飞机的姿态运动 3.速度坐标系(气流轴系)S-oxayaza 原点o —飞机质心 oxa — 飞机速度V的方向 oza —飞机对称平面,垂直于oxa,指向机腹 oya —垂直于oxaza平面,向右 描述飞机的速度(轨迹)运动, 气流方向—力的方向(如吹风数据) 坐标系间可以相互转换,转换矩阵 两个主要的坐标系:惯性;机体

分类:
低速 亚声速 跨声速 超声速(高超) 稀薄气体空气动力学、气体热化学动力学、 电磁流体力学等 工业空气动力学


研究方法:

实验研究

风洞、水洞、激波管中进行的模型试验(相似原理) 飞行试验 优点:较真实、可靠 不足:不能完全、准确模拟、测量精度、人力、物理 流动现象=》物理模型=》基本方程=》求解=》分析、判断=》修 正 揭示内在规律,受数学发展水平限制、难满足复杂问题 近似计算方法(有限元) 经费少、但有时结果可靠性差
二、飞机的运动参数(续)

速度向量与机体轴系的关系
1、迎角 速度向量V在飞机对称面上的投影与机体轴ox的夹 角,以V的投影在ox轴之下为正 2、侧滑角 速度向量V与飞机对称面的夹角。V处于对称面之 右时为正
产生空气动力的主要因素 对于飞控是重要的变量
三、飞行器运动的自由度
刚体飞机,空间运动,有6个自由度: 质心x、y、z线运动(速度增减,升降,左右移动) 绕质心的转动角运动 飞机有一个对称面:纵向剖面,几何对称、质量对称 1.纵向运动 速度V,高度H,俯仰角 2.横航向运动 质心的侧向移动,偏航角,滚转角 纵向、横航向内部各变量之间的气动交联较强 纵向与横航向之间的气动交联较弱,可以简化分析 飞机—面对称,导弹—轴对称
二、飞机的运动参数(续)

速度轴系与地面轴系的关系
1.航迹倾斜角 飞行速度V与地平面间的夹角 以飞机向上飞时的为正 2.航迹方位角
飞行速度V在地平面上的投影与ogxg间的夹角 速度在地面的投影在ogxg之右时为正 3.航迹滚转角 速度轴oza与包含速度轴oxa的铅垂面间的夹角, 以飞机右倾斜为正 制导、导航中常用,飞机作为点运动,运动学方程
二、飞机的运动参数(续)
俯仰角


俯仰角是指纵轴与水平面间 的夹角,而攻角是指纵轴与 来流之间的夹角(侧滑角为 零时)。 当导弹水平飞行时,攻角等 于俯仰角;导弹不是水平飞 行时,攻角不等于俯仰角。 图中所示的导弹不是水平飞 行,攻角不等于俯仰角。
计算公式:


俯仰角=攻角+弹道倾角
二、飞机的运动参数(续)

一、流场(续)
(3)流管: 多个流线形成流管 管内气体不会流出 管外气体也不会流入,不同的截面上,流量相同 (4)定常流: 流场中各点的速度、加速度以及状态参数等只是几何位 置的函数,与时间无关 (5)流动的相对性 物体静止,空气流动 相对速度相同时,流场中 空气动力相同 物体运动,空气静止

二、连续方程
1 p V 2 p0 总压 2
V大,p小;V小,p大
四、马赫数M
马赫数:为气流速度(v)和当地音速(a)之比: 音速:微弱扰动在介质中的传播速度。


M
V a
音速:
a 20 T
T:空气的绝对温度
音速a与温度有关,表示空气受压缩的程度,是高度的函数 临界马赫数Mcr 迎面气流的M数超过某数值时,翼面上出现局部的超音速区, 将产生局部激波 ,此时远前方的迎面气流速度V与远前方 空气的音速a之比 Mcr-每种机翼2
亚音速时M<1, ( M2-1)为负值,截面积增大则流速变小。 超音速时M〉1, ( M2-1)为正值,截面积增大流速也增大
延伸—风洞结构
风洞不同马赫数流场的形成
亚跨声速:
1 p V 2 C (常数) 2
超声速: 拉阀尔喷管:它是一个先渐缩后渐扩的管道装置,喷管的最小截面称为喉道, 在喉道处气流达到音速。 要想把亚音速气流加速成为超音速气流,管道结构必须是先收缩后扩张,这一 点是产生超音速气流的必要条件。
在流管上取垂直于流管中心线上流速方向的两个截面, 截面I: V1, 1, A1, m1 截面Ⅱ: V2 , 2 , A2 , m2 空气流动是连续的,处处没有空隙 定常流:流场中各点均无随时间分子堆积,因而单位时间内, 流入截面Ⅰ的空气质量必等于流出截面Ⅱ的空气质量 m1 1V1 A 1 m2 2V2 A 2 质量守恒原理在流体力学中的应用 d dV dA 或写成: 0 VA m(常数) V A 在V小、小范围内 连续方程: 常数,d 0


飞行速度定义 M<0.3时为低速飞行;0.3<M<Mcr为亚音速飞行; Mcr<M<1.5为 跨音速飞行; 1.5<M<5为超音速飞行,M>5为高超音速飞行
五、弱扰动的传播
飞机在大气中飞行 — 扰动源 扰动源以速度V在静止空气中运动,相当于扰动源静止而空 气以速度v流动 扰动源v=0,以音速传播(a) V<a,M<1,前方空气受扰,变化不大(b) V=a,M=1,扰动源与扰动波同时到达,前方空气(c),扰动 只影响下游 V>a,M>1, (d)前方空气未受扰飞机前临近空气,突然,形 成激波,受扰区限于扰源下游的马赫锥内
VA 常数
A大,V小
A小,V大
三、伯努里方程(能量守恒定律)
在低速不可压缩的假设下,密度为常数 伯努里方程: 1 2 p V C (常数) 其中:p-静压, 2 1/2V2 — 动压,单位体积的动能,与高 度、速度有关 表明静压与动压之和沿流管不变 当V=0,p=p0,—最大静压
第二节 飞行器的运动参数与操纵机构
一、坐标系:
描述飞机的姿态、位置;飞机在大气中飞行,运动复杂,有多 个坐标系描述;美制与苏制,国标——美制 1.地面坐标系(地轴系) Sg og xg yg zg 原点og —地面某一点(起飞点) ogxg —地平面内,指向某方向(飞行航线) ogyg —地平面内,垂直于ogxg,指向右方 y ogzg —垂直地面,指向地心, x o 右手定则 z H 描述飞机的轨迹运动 “不动”的坐标系, ogxg x 惯性坐标系

六、激波
气流以超音速流经物体时,流场中的受扰区情况与物体的形 状有关,超音速—强扰动,产生激波 激波实际上就是气流各参数的不连续分界面 在激波之前,气流不受扰动,气流速度的大小和方向不变, 各状态参数也是常数; 气流通过激波,其流速突然变小,温度、压强、密度等也突 然升高 钝头物体的激波是脱体波(正激波),产生大波阻 楔形物体的激波是倾斜的(附体波 ),波阻较小,用于超音 速飞机的机头

七 膨胀波
伯努利静态公式 不适用于高速流动情况 ,由 于空气高速流动时密度不是常数 由推导伯努利方程动态过程,得出考虑到空气的可压缩性的 能量守恒方程: dV dA ( M 2 1) V A 流管截面积增大(dA为正)的情况下,流速变小或增大,与M 数有关 超音速气流的变化过渡区内气体是连续膨胀的,叫膨胀波
二、飞机的运动参数(续)
攻角
英文:Angle Of Attack (AOA) 攻角,也称迎角,为一 空气动力学名词。


对于翼形来说,攻角定义为翼弦与来流速度之间的夹 角,抬头为正,低头为负,常用符号α表示。 对于实际飞行的导弹来说,由于有侧滑角的存在,攻 角就不能如上定义,需要投影到导弹的纵对称平面内, 即攻角为速度矢量V在纵向对称面上的投影与导弹纵 轴之间的夹角。若导弹的侧滑角为零,则攻角直接为 速度矢量V与导弹纵轴之间的夹角
Za
X O
速度V 气流坐标系 X Xa
Z
二、飞机的运动参数

姿态角:机体轴系与地轴系的关系
1.俯仰角 机体轴ox与地平面间的夹角 抬头为正 2.偏航角 机体轴ox在地面上的投影与 地轴ogxg间的夹角 机头右偏航为正 3.滚转角(倾斜角) 机体轴oz与包含机体轴ox的 铅垂面间的夹角, 飞机向右倾斜时为正 统称欧拉角




它是在流体力学的基础上,随着航空工业和喷气推 进技术的发展而成长起来的一个学科。还涉及飞行 器性能、稳定性和操纵性等问题。 包括外流、内流。 遵循基本规律:质量守恒、牛顿第二定律,能量守恒、热
力学第一、第二定律等。

发展简史:



18世纪流体力学开始创建:伯努利公式、欧拉方程 等。 19世纪流体力学全面发展;形成粘性流体动力学、 空气-气体动力学:NS方程、雷诺方程等。 20世纪创建完整的空气动力学体系:儒可夫斯基、 普朗特、冯卡门、钱学森等,包括无粘和粘性流体 力学。1903年莱特兄弟实现飞行,60年代计算流体 力学。。。。。。

理论分析



数值计算
相关主题