AI芯片什么是AI芯片的架构、分类及关键技术概述
人工智能芯片目前有两种发展路径:一种是延续传统计算架构,加速硬件计算能力,主要以3 种类型的芯片为代表,即 GPU、FPGA、ASIC,但CPU依旧发挥着不可替代的作用;另一种是颠覆经典的冯·诺依曼计算架构,采用类脑神经结构来提升计算能力,以IBM TrueNorth 芯片为代表。
传统CPU
计算机工业从1960年代早期开始使用CPU这个术语。
迄今为止,CPU从形态、设计到实现都已发生了巨大的变化,但是其基本工作原理却一直没有大的改变。
通常CPU 由控制器和运算器这两个主要部件组成。
传统的CPU 内部结构图如图所示:
传统CPU内部结构图(ALU计算模块)
从图中我们可以看到:实质上仅单独的ALU模块(逻辑运算单元)是用来完成数据计算的,其他各个模块的存在都是为了保证指令能够一条接一条的有序执行。
这种通用性结构对于传统的编程计算模式非常适合,同时可以通过提升CPU主频(提升单位时间内执行指令的条数)来提升计算速度。
但对于深度学习中的并不需要太多的程序指令、却需要海量数据运算的计算需求,这种结构就显得有些力不从心。
尤其是在功耗限制下,无法通过无限制的提升CPU 和内存的工作频率来加快指令执行速度,这种情况导致CPU 系统的发展遇到不可逾越的瓶颈。
并行加速计算的GPU
GPU 作为最早从事并行加速计算的处理器,相比CPU 速度快,同时比其他加速器芯片编程灵活简单。
传统的CPU 之所以不适合人工智能算法的执行,主要原因在于其计算指令遵循串行执行的方式,没能发挥出芯片的全部潜力。
与之不同的是,GPU 具有高并行结构,在处理图形数据和复杂算法方面拥有比CPU 更高的效率。
对比GPU 和CPU 在结构上的差异,CPU大部分面积为控制器和寄存器,而GPU 拥有更ALU(逻辑运算单元)用于数据处理,。