当前位置:文档之家› 备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案

备战高考物理电磁感应现象的两类情况(大题培优 易错 难题)及答案一、电磁感应现象的两类情况1.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。

正方形线框ABCD 边长为L ,其中AB 边和CD 边质量均为m ,电阻均为r ,两端与轨道始终接触良好,导轨电阻不计。

BC 边和AD 边为绝缘轻杆,质量不计。

线框从斜轨上自静止开始下滑,开始时底边AB 与OO ´相距L 。

在水平轨道之间,´´MNN M 长方形区域分布着有竖直向上的匀强磁场,´OM O N L =>,´´N M 右侧区域分布着竖直向下的匀强磁场,这两处磁场的磁感应强度大小均为B 。

在右侧磁场区域内有一垂直轨道放置并被暂时锁定的导体杆EF ,其质量为m 电阻为r 。

锁定解除开关K 与M 点的距离为L ,不会阻隔导轨中的电流。

当线框AB 边经过开关K 时,EF 杆的锁定被解除,不计轨道转折处OO ´和锁定解除开关造成的机械能损耗。

(1)求整个线框刚到达水平面时的速度0v ; (2)求线框AB 边刚进入磁场时,AB 两端的电压U AB ; (3)求CD 边进入磁场时,线框的速度v ;(4)若线框AB 边尚未到达´´M N ,杆EF 就以速度23123B L v mr=离开M ´N ´右侧磁场区域,求此时线框的速度多大?【答案】(132gL 2)16BL gL ;(3)23323B L gL mr;(4)233223B L gL mr【解析】 【分析】 【详解】(1)由机械能守恒201sin 302sin 30022mgL mg L mv +=︒︒- 可得032v gL =(2)由法拉第电磁感应定律可知0E BLv =根据闭合电路欧姆定律可知032BLv I r =根据部分电路欧姆定律12AB U I r =⋅可得AB U =(3)线框进入磁场的过程中,由动量定理022BIL t mv mv -⋅∆=-又有232BL I t r ⋅∆=代入可得233B L v mr= (4)杆EF 解除锁定后,杆EF 向左运动,线框向右运动,线框总电流等于杆EF 上电流 对杆EF1BIL t m v ⋅∆=∆对线框22BIL t m v ⋅∆=⋅∆可得122v v ∆=∆整理得到2321123B L v v mr∆=∆=可得232223B L v v v mr=-∆=2.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。

以DG 中点O 为坐标原点,沿斜面向上平行于GH 方向建立x 轴,在DG 连线沿斜面向上的整个空间存在着垂直于斜面向上的磁场,且磁感应强度大小B 与坐标x 满足关系B =(0.6+0.2x )T ,一根长l =2m ,电阻r =2Ω,质量m =0.1kg 的粗细均匀的金属棒MN 平行于DG 放置,在拉力F 作用下以恒定的速度v =1m/s 从x =0处沿x 轴正方向运动,金属棒与两导轨接触良好。

g 取10m/s 2,sin10°=0.18,不计其它电阻。

(提示:可以用F -x 图象下的“面积”代表力F 所做的功)求: (1)金属棒通过x =1m 处时的电流大小; (2)金属棒通过x =1m 处时两端的电势差U MN ; (3)金属棒从x =0到x =2m 过程中,外力F 做的功。

【答案】(1)0.2A ;(2)1.4V ;(3)0.68J 【解析】 【分析】 【详解】(1)金属棒连入电路部分产生的感应电动势为11(0.60.21)11V=0.8V E B dv ==+⨯⨯⨯根据闭合电路欧姆定律可得电流大小1100.2A2E I d R r xr l==++ (2)解法一:根据欧姆定律可得金属棒通过1m x =处时两端的电势差101(2)() 1.4V MN U I R xr B l d v =++-=解法二:根据闭合电路欧姆定律可得金属棒通过1m x =处时两端的电势差111(0.60.21)210.22V 1.4V 2MN d U B lv I r l =-=+⨯⨯⨯-⨯⨯= (3)金属棒做匀速直线运动,则有sin F mg BdI θ=+其中0(0.60.2)11A 0.2A32Bdv x I d x R r xr l+⨯⨯===+++ 可得0.300.04F x=+金属棒从x=0到x=2m过程中,外力F做的功0.300.382J0.68J2W Fx+==⨯=3.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=3.0Ω,R2=4.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)S断开后,求流经R2的电量.【答案】(1)0.8V;(2)41.210C-⨯【解析】【分析】【详解】(1)感应电动势:10.210000.00200.82BE n n S Vt t∆Φ∆-===⨯⨯=∆∆;(2)电路电流120.80.1134EI Ar R R===++++,电阻2R两端电压220.140.4U IR V==⨯=,电容器所带电荷量65230104 1.210Q CU C--==⨯⨯=⨯,S断开后,流经2R的电量为41.210C-⨯;【点睛】本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.4.如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场区域,磁场的方向垂直纸面向里,线框向上离开磁场时的速度刚好是进入磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进入磁场.整个运动过程中始终存在着大小恒定的空气阻力f,且线框不发生转动.求:(1)线框在下落阶段匀速进入磁场时的速度v 2; (2)线框在上升阶段刚离开磁场时的速度v 1; (3)线框在上升阶段通过磁场过程中产生的焦耳热Q . 【答案】(1)22mg fR B a - (2)()22122Rv mg f B a =-(3)()()()2224432mR Q mg f mg f a b B a ⎡⎤=--++⎣⎦ 【解析】 【分析】(1)下落阶段匀速进入磁场说明线框所受力:重力、空气阻力及向上的安培力的合力为零.(2)对比线框离开磁场后继续上升一段高度(设为h ),然后下落相同高度h 到匀速进入磁场时两个阶段受力情况不同,合力做功不同,由动能定理:线框从离开磁场至上升到最高点的过程.(3)求解焦耳热Q ,需要特别注意的是线框向上穿过磁场是位移是a+b 而不是b ,这是易错的地方 【详解】(1)线框在下落阶段匀速进入磁场瞬间,由平衡知识有:222B a v mg f R=+解得:222()mg f Rv B a -=(2)线框从离开磁场至上升到最高点的过程,由动能定理:2110()02mg f h mv -+=- 线圈从最高点落至进入磁场瞬间:211()2mg f h mv -= 联立解得:221222()mg f Rv v mg f mg f B a+==-- (3)线框在向上通过磁场过程中,由能量守恒定律有:220111()()22Q mg f a b mv mv +++=- 而012v v =解得:222443[()]()()2mR Q mg f mg f a b B a=--++ 即线框在上升阶段通过磁场过程中产生的焦耳热为222443[()]()()2mR Q mg f mg f a b B a=--++ 【点睛】此类问题的关键是明确所研究物体运动各个阶段的受力情况,做功情况及能量转化情况,选择利用牛顿运动定律、动能定理或能的转化与守恒定律解决针对性的问题,由于过程分析不明而易出现错误.5.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)同路中的电流;(2)金属棒在x =2m 处的速度;(3)金属棒从x =0运动到x =2m 过程中安培力做功的大小; (4)金属棒从x =0运动到x =2m 过程中外力的平均功率. 【答案】(1)2(2)(3)1.6(4)0.71 【解析】 【分析】 【详解】(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变 x =0处导体棒切割磁感线产生电动势电流(2) x =2m 处解得(3)F-X 图像为一条倾斜的直线,图像围成的面积就是二者的乘积即x=0时,F=0.4N x=2m时,F=1.2N(4)从x=0运动到x=2m,根据动能定理解得解得所以【点睛】(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.6.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v1向上射入有磁感应强度为B1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B1).区域Ⅱ内有磁感应强度大小为B2、垂直纸面向外的匀强磁场,磁场右边界是直径为D、与上下极板相切的半圆(圆与下板相切于极板中央A).放在A处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D的平行氙粒子束,经过栅极MN、PQ之间的电场加速后从PQ喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长RM=2D,栅极MN和PQ间距为d,氙原子核的质量为m、电荷量为q,求:(1)氙原子核在A处的速度大小v2;(2)氙原子核从PQ喷出时的速度大小v3;(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.【答案】(1)22B Dq m (2)222112284B v qdm B D q m+ (3)090FAN ∠= 13 【解析】 【分析】 【详解】(1)离子在磁场中做匀速圆周运动时:2222v B qv m r=根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2D r = 则:222B Dqv m=(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:22321122Uq mv mv =- 其中电压11U Ed B v d ==联立可得2221123284B v qdm B D qv m+= (3)根据题意,当区域Ⅱ中的磁场变为2B '之后,根据2mvr B q =''可知,2r r D '==①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时090FAN ∠=;②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .22AO AN NO D ===,所以此时入射角度030GAN ∠=.根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的粒子占A 处总粒子束的比例为00601==1803η7.磁场在xOy 平面内的分布如图所示,其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L 0,整个磁场以速度v 沿x 轴正方向匀速运动。

相关主题