当前位置:文档之家› 基于单片机的电热水壶控制系统的毕业设计(论文)word格式

基于单片机的电热水壶控制系统的毕业设计(论文)word格式

前言Intel公司在MCS-48系列单片微机的基础上,采用HMOS技术,研制出了8位高档的MCS-51系列产品微机。

该微机型在性能上有了很大的改进和提高:片内程序存贮器容量扩大了一倍,外部程序存贮器的寻址空间扩大到64K字节。

片内数据存贮器扩大了一倍,外部数据存贮器的空间达到64K字节。

并行I/O口线增加到32,且可进行位处理。

MCS-51设有两个16位的定时器/计数器,且可程序设定多种工作方式。

设有一个全双工串行I/O口,可程序设定4种工作方式,设有4个8位的通用工作寄存器区,可适应多级中断和子程序嵌套的情况,这样可避免寄存器内容进行栈保护操作,提高了中断响应速度,加速了子程序的调用,设有两个内部中断源和两个外部中断源,一个串行口中断源,可程序设定中断优先级,堆栈位置可允许设定,深度可在允许范围内选用。

MCS-51指令系统增强了加,减,乘,除,比较,堆栈操作,因而运算功能大大加强。

所设置的灵活的跳转指令,不仅能充分满足了实际应用的需要,而且可尽量减少程序存贮空间的占用,MCS-51内部设有可直接进行位寻址的存贮器、位处理指令、位处理累加和运算器等,因而为一种功能极强的位处理机。

这为控制方面的应用和逻辑运算提供了很大方便。

从以上可见,MCS-51系列单片微机具有很强的功能,使用范围广,既可构成功能很强的复杂系统,也可组成较简单的应用系统。

目前,单片机在家电,工业生产等领域的应用非常广泛,为了适应不同产品对单片机的不同要求,半导体生产厂家生产出了各种规格的单片机。

本文介绍了一种以MCS-51系列单片机为控制芯片,对电热水壶工作进行控制的方法。

温度检测电路由热电偶、运算放大器,温度传感器AD590等组成,直接输出电流(1μA/K)经运算放大器LM358进行I/V转化后,可得到电压输出,输出电压为100mV/℃,经A/D转换通道送到微处理器中。

A/D转换一般都设置在前向通道中,它将外界输入的模拟信号转换成计算机数据总线能接受的数字量。

工程上常用的隔离方法有光电隔离器、变压器、继电器和集成组件等,而光电隔离器有独特优点得到广泛应用。

由于该器件是通过电——光——电这种转换来实现对输出设备进行控制的,彼此之间没有电气连接,因而起到隔离作用,隔离电压与光电隔离器的结构有关。

经实际运行表明,该方案安全、可靠,完全能够满足实际需要。

-1-1 热水壶控制系统总体概述1.1 热水壶的工作情况对于常规的电热水壶,只要接通电源,就开始加热,直到水沸腾后通过蒸汽来产生声音报警。

这种设计有下面几个方面的不足:1.如水壶中没水,电源误接通时也会一直加热,容易引起事故。

2.当只需要加热到沸点以下某一温度时,不能及时给出声音报警信号。

3.当水加热沸腾后不能自动停止工作。

针对以上不足,在本设计方案中,用MC-51单片机作为控制芯片,管理整个电热水壶的工作情况,构成了一个闭环控制系统,而且增加了三个按键和六位数码管显示。

它的工作情况和常规的热水壶相比,有下面几个方面的特点:1.有三个按键,可用来设置希望加热到的温度即报警的温度。

上电复位后,设置温度初值为20度,每按一下按键,温度设置值就会增加1度,整个温度设置值在20—100度之间循环。

2.这个按键还具有启动电热水壶开始工作的作用。

当每次电源接通后,只有按键按下过之后,电热水壶才开始加热,这样,可以防止电源误接通时电热水壶一直加热,引发事故。

3.当加热到设置温度时,单片机会控制停止加热,并通过蜂鸣器给出声音提示。

4.三位数码管在设置温度操作时显示当前设置的温度,另三位数码管其余时间实时显示电热水壶中水的实际温度。

21.2 MCS-51单片机控制的总体介绍硬件设计的总电路连接框图如下图:图1-1 硬件设计的总电路连接框图单片机控制热水壶的硬件构成包括8051芯片、8255芯片、地址锁存器等组成的单片机控制电路、温度检测电路、A/D转换电路、光电隔离电路、键盘及显示电路和温度加热电路。

整个系统的关键电路是单片机控制电路,是整个控制的核心,完成信号的输入和输出的转换,即可将温度检测电路采样的输入的信号通过A/D转换器ADC0809进行处理加工后输出到显示器进行显示,并可以通过键盘对温度进行控制,如此同时当水加热超过指定的温度以后,蜂鸣器工作报警。

并对其中部分电路编制子程序,以及相应的软件设计。

-3-2 电热水壶控制系统的硬件设计2.1 温度检测电路和A/D转换器的电路2.1.1 AD590温度传感器的概念AD590是一种二端式的集成温度传感器。

图2-1-1 AD590引脚图其主要技术参数有:1.测温范围为-55~+150℃。

2.工作电压为+4~+30V,由于AD590是一种恒流源形式的温度传感器,只需在其二端加上一定工作电压则其输出电流随温度变化而变化,其线性电流输出为1μA/。

K,即温度每变化1℃,其输出电流变化1μA;它以热力学温标零点作为零输出点,因此在25℃时,其输出电流为298.2μA。

3.精度:经过激光平衡调整,AD590的校准精度可达+和-0.5℃,全温区范围线性度可达+和-0.3℃(AD590M)当其在10℃温区范围内校正后测量,精度可达+和-0.1℃,在全温区范围内(-55~+145℃)使用,精度也可高达+、-1℃。

由于AD590是一种电流型的温度传感器,因此具有较强的抗干扰能力,适用于计算机进行远距离温度测量和控制,远距离信号传递时,可采用一般的双绞线来完成,其电阻比较大,因此不需要精密电源对其供电,长导线上的压降一般不影响测量精度;不需要温度补偿和专门的线性电路。

42.1.2 温度检测电路图2-1-2 电源转换电路在介绍温度检测电路之前,首先要说明一下电源转换电路。

电压经过四个二极管两两导通整流滤波后,再经过电压转换芯片7805就可以将原来交流220V的电压转换成直流电压为+5V,即可以得到报警电路和温度检测电路所需要的电压值。

温度检测电路由温度传感器AD590等组成,直接输出电流1μA/K,输出电压为100mV/℃,经运算放大器LM358进行I/V转化后,再经A/D 转换通道送到微处理器中,R6、R5、R2用于相互配合调节温度测量的满刻度值。

图2-1-3温度检测电路当传感器AD590所处温区发生1℃的温度变化时,流过其所在回路的电流即产生1μA的变化,则其输出电压的变化为:ΔV0=1μA/℃*100KΩ=100mV/℃AD590的输出电流值说明如下:其输出电流是以绝对温度零度(-273℃)为基准,每增加1℃,它会增加1μA输出电流,因此在室温25℃时,其输出电流Io=(273+25)=298μA。

Vo的值为Io乘上10K,以室温25℃而言,输出值为2.98V(10K×298μA)。

量测Vo时,不可分出任何电流,否则量测值会不准。

AD590的输出电流I=(273+T)μA(T为摄氏温度),因此量测的电压V为(273+T)μA ×10K= (2.73+T/100)V。

[8]在本论文中通过温度集成器AD590对外部-55~+150℃范围内的温度进行采样,在AD590的两端分别接地和接电源,得到一定的压差,因此会得到相应的工作电压,其输出电流会随-5-温度变化而变化。

电流1μA/K其输出电压为100mV/℃,经运算放大器LM358进行I/V转化后,再送入A/D转换电路中进行模数转换,经过微处理器处理即可送到LED显示器显示温度。

2.1.3 A/D转换器电路原理和电路接口图A/D转换一般都设置在前向通道中,它将外界输入的模拟信号转换成计算机数据总线能接受的数字量。

在前向通道必须配置A/D转换电路时,首先考虑的是能否选用带有A/D的单片机,本论文中无法选择单片机片内有A/D部件,则必须在前向通道中配置A/D接口。

要选择好的A/D转换器芯片,选择A/D转换芯片的原则从转换精度、转换速度、模拟信号输入通道数以及成本、供货来源等全面考虑。

选择不同的A/D转换芯片,与单片机的接口电路要求不同,必须依芯片对控制电路的要求设置,接口电路必须满足这些要求。

一般来说,A/D转换芯片输入的模拟电压都有规定的要求,如0~+5V,0~+10V,0~+2V等,因此要考虑到传感器输出信号与之匹配。

本论文中采用逐次逼近法A/D转换器电路原理。

其主要原理为:将一待转换的模拟输入信号U1n与一个推测信号Ur相比较,根据推测信号大于还是小于输入信号来决定增大还是减少该推测信号相等时,向D/A转换器输入的数字就是对应模拟输入量的数字量。

其“推测”值的算法如下:使二位进制计数器中(输出锁存器)的每一位从最高位起依次置1,每接一位时,都要进行测试。

若模拟输入信号U1n小于推测信号U1,则比较器输出为零,并使该位清零;若模拟输入信号U1n大于推测信号U1,比较器输出为1,并使该位保持位1。

无论哪种情况,均应继续比较下一位,直到最末位为止。

此时,D/A转换器的数字输入即为对应模拟输入信号的数字量,将此数字输入就完成了A/D转换过程。

1.A/D转换器的引脚说明:ADC0809是CMOS集成电路8位单片A/D转换器。

双列直插28引脚封装。

片内有8路模拟开关、模拟开关的地址锁存与译码电路、比较器、256R电阻T型网络、树状电子开关、逐次逼近寄存器SAR、三态输出锁存,缓冲器、控制与时序电路等。

ADC0809引脚功能说明如下:IN0——IN7:8路输入通道的模拟量输入端。

A、B、C口:8路模拟开关的三位地址输入端,用来选择8路模拟输入的一路进行A/D转换。

ALE:地址锁存允许。

ALE有效将三位地址A、B、C锁存到地址锁存器中。

START:为启动控制输入端。

它与ALE可以接在一起,当通过程序加上一个正脉冲便立即开始A/D转换。

EOC:转换结束信号输出端,高电平有效。

在此输出端供给一个有效信号则打开三态输出锁存缓冲器,把转换后的结果送至外部数据线。

COLCK:时钟输入端。

CLOCK为600kHZ时,转换时间位100us。

D0——D7:8位数字输出段。

6Vcc: 电源输入端。

GND:接地端。

2.A/D转换的连接电路及应用图2-1-4 A/D转换的连接电路由图2-1-4可以看出ADC0809时钟CLK由8051ALE信号提供,ALE信号频率为f/6。

用地址线低8位A0、A1、A2(P0.0~P0.2)接0809的A、B、C三端用来对8路模拟通道进行选择。

EOC经非门与8051 相接,0809与8051采用中断方式联络,外部中断1服务子程序读A/D转换结果,并启动下一次转换。

0809启动条件为START= ,因此启动时,应用写指令(使WR=1),并且要保证地址线P2.6=0,其端口地址为DFFFH。

ADC0809转换器将信号进行模数转换,再将数字信号传入8051进行微处理,通过LED显示温度。

相关主题