当前位置:文档之家› 通信系统设计报告

通信系统设计报告

通信系统课程设计报告题目:模拟线性调制系统的建模、设计与计算机仿真分析学院xx专业班级xx学生姓名xx学生学号xx提交日期 2015.6.28目录1 设计目的 (2)2 设计要求和设计指标 (2)3 设计内容 (3)3.1线性调制的一般原理 (3)3.2常规双边带调制AM (4)3.2.1 AM调制工作原理 (4)3.2.2 AM调制解调仿真电路 (5)3.2.3 AM调制解调仿真结果与分析 (5)3.3双边带调制DSB (9)3.3.1 DSB调制解调工作原理 (9)3.3.2 DSB调制解调仿真电路 (9)3.3.3 DSB调制解调仿真结果与分析 (10)3.4单边带调制SSB (14)3.4.1 SSB调制解调工作原理 (14)3.4.2 SSB调制解调仿真电路 (15)3.4.3 SSB调制解调仿真结果与分析 (16)4 本设计改进建议 (19)5 总结 (19)参考文献 (20)2 设计目的(1)使学生掌握系统各功能模块的基本工作原理;(2)培养学生掌握电路设计的基本思路和方法;(3)能提高学生对所学理论知识的理解能力;(4)能提高和挖掘学生对所学知识的实际应用能力即创新能力;(5)提高学生的科技论文写作能力。

2 设计要求和设计指标(1)学习SystemView仿真软件;(2)对需要仿真的通信系统各功能模块的工作原理进行分析;(3)提出系统的设计方案,选用合适的模块;(4)对所设计系统进行仿真;(5)并对仿真结果进行分析。

3 设计内容3.1 线性调制的一般原理模拟调制系统可分为线性调制和非线性调制,本课程设计只研究线性调制系统的设计与仿真。

线性调制系统中,常用的方法有AM 调制,DSB 调制,SSB 调制。

线性调制的一般原理:载波:)cos()(0ϕω+=t A t s c调制信号:)cos()()(0ϕω+=t t Am t s c m式中()t m —基带信号。

线性调制器的一般模型如图3-1在该模型中,适当选择带通滤波器的冲击响应()t h ,便可以得到各种线性调制信号。

线性解调器的一般模型如图3-2。

图3-2线性解调系统的一般模型其中()t s m —已调信号,()t n —信道加性高斯白噪声。

3.2 常规双边带调制AM3.2.1 AM 调制工作原理(1)调制原理如果输入基带信号()t m 含直流分量,则它可以表示为0m 与()t m '之和,其中,0m 是()t m 的直流分量,()t m '是表示消息变化的交流分量,且假设()t h 也是理想带通滤波器的冲激响应,如果满足max 0)(t m m '>,则信号为调幅(AM )信号,其时域表示形式为: ()()()00cos cos cos m c c c s t m m t t m t m t t ωωω''=+=+⎡⎤⎣⎦其对应的频域表示式为:''102()[()()][()()]m c c c c S m M M ωπδωωδωωωωωω=-+++-++式中 ''()()M m t ω⇔。

(2)解调原理通常AM 信号可以用相干解调(同步检测)和非相干解调(包络检波)两种方法进行解调。

由AM 信号的频谱可知,如果将已调信号的频谱搬回到原点位置,即可得到原始的调制信号频谱,从而恢复出原始信号。

解调中的频谱搬移同样可用调制时的相乘运算来实现。

将已调信号乘上一个与调制器同频同相的载波,可得21100022()cos()[()]cos [()][()]cos 2AM c c c s t t A m t t A m t A m t t ωωω⋅=+=+++由上式可知,只要用一个低通滤波器,就可以将第1项与第2项分离,无失真的恢复出原始的调制信号:102[()]A m t + 本设计采用了相干解调的方法进行解调,其原理框图如图3-3所示。

图3-3 相干解调原理框图3.2.2 AM调制解调仿真电路根据以上AM信号的调制与解调原理,用system view仿真的电路图如图3-4所示。

图3-4 AM调制解调仿真电路具体设计参数为:Token12、14:正弦载波信号,幅度为1V,频率为300HZ;Token1:增益为2;Token2、9:乘法器;Token6、7:加法器;Token4:正弦基带信号,幅度为1V,频率10HZ;Token10:低通滤波器,截止频率为12HZ,极点数为3。

采样频率=3000HZ,采样点数=1024。

3.2.3 AM调制解调仿真结果与分析仿真后的波形如图3-5所示:图3-5(a)载波信号图3-5(b)基带信号图3-5(c)AM已调信号图3-5(d)AM解调信号图3-5 AM调制解调波形图其中基带信号频谱、已调信号频谱及解调后信号频谱如下图3-6所示:图3-6(a)载波信号频谱图图3-6(b)基带信号频谱图图3-6(c)AM已调信号频谱图图3-6(d)AM解调信号频谱图图3-6 频谱比较图分析:AM调制为线性调制的一种,由图3-5可以看出,在波形上,已调信号的幅值随基带信号变化而呈正比地变化;由图3-6可以看出,在频谱结构上,它完全是基带信号频谱结构在频域内的简单搬移。

用相干解调法解调出来的信号与基带信号基本一致,实现了无失真传输。

3.3 双边带调制DSB3.3.1 DSB 调制解调工作原理(1)调制原理在图3-1中,如果输入的基带信号没有直流分量,且()h t 是理想的带通滤波器,则该基带信号与载波相乘就得到双边带信号(DSB 信号),或称双边带抑制载波信号。

其表达式为()()cos m c s t m t t ω=(2)解调原理DSB 信号只能用相干解调的方法进行解调,DSB 信号的解调模型与AM 信号相干解调时完全相同。

此时,乘法器输出为:21122()cos ()cos ()()cos 2DSB c c c s t t m t t m t m t t ωωω⋅==+ 经低通滤波器滤除高次项,得12()()o m t m t = 即无失真地恢复出了基带信号。

3.3.2 DSB 调制解调仿真电路根据以上DSB 信号的调制与解调原理,用system view 仿真的电路图如图7所示。

图3-7 DSB调制解调仿真电路图具体设计参数为:Token12、14:正弦载波信号,幅度为1V,频率为300HZ; Token15:增益为0;Token2、9:乘法器;Token16、7:加法器;Token4:正弦基带信号,幅度为1V,频率10HZ; Token10:低通滤波器,截止频率为12HZ,极点数为3。

采样频率=3000HZ,采样点数=1024。

3.3.3 DSB调制解调仿真结果与分析仿真后的波形如图3-8所示:图3-8(a)载波信号图3-8(b)基带信号图3-8(c)DSB已调信号图3-8(d)DSB解调信号图3-8 DSB调制解调波形图其中解调后信号频谱、已调信号频谱及基带信号频谱如下图3-9所示:图3-9(a)载波信号频谱图图3-9(b)基带信号频谱图图3-9(c)DSB已调信号频谱图图3-9(d)DSB解调信号频谱图图3-9 频谱比较图分析:DSB调制为线性调制的一种,由图3-8可以看出,在波形上,DSB调制信号有明显的包络,且存在反相点, 占用频带宽度比较宽,为基带信号的2倍;由图3-9可以看出,在频谱上,DSB信号不存在载波分量,即没有离散谱,只有上下边带两部分,调制效率为100%,即全部功率都用于信息传输。

由于DSB信号的包络不再与调制信号的变化规律一致,因此采用相干解调,低通滤波器的截止频率为12Hz,经相干解调后,与原信号波形一致,稍微存在一些延时。

3.4 单边带调制SSB3.4.1 SSB 调制解调工作原理(1)调制原理双边带已调信号包含有两个边带,即上、下边带。

由于这两个边带包含的信息相同,从信息传输的角度来考虑,传输一个边带就够了。

所谓单边带调制,就是只产生一个边带的调制方式。

故易知在DSB 调制后加适当截止频率的高通或低通滤波器便可产生相应SSB 信号。

通过低通滤波器后产生的下边带SSB 信号,表达式为:()()()t t mt t m t s c c m ωωsin ˆ5.0cos 5.0+= 通过高通滤波器后产生的上边带SSB 信号,表达式为: ()()()t t mt t m t s c c m ωωsin ˆ5.0cos 5.0-= 原理图如图3-10所示。

图3-10 SSB 调制系统原理图但是由于滤波器的截止特性不理想,这里采用移相法来设计。

设调制信号的单频信号t A t f m m ωcos )(=,载波为t t c c ωcos )(=,则调制后的双边带时域波形为()()()[]2/cos cos cos cos t w w A t w w A t t A t s m c m m c m c m m DSB -++==ωω保留上边带,波形为()()[]()2/sin sin cos cos 2/cos t w t w t w t w A t w w A t s m c m c m m c m USB -=+=保留下边带,波形为 ()()[]()2/sin sin cos cos 2/cos t w t w t w t w A t w w A t s m c m c m m c m lSB +=-=上两式中的第一项与调制信号和载波信号的乘积成正比,称为同相分量;而第二项的乘积则是调制信号与载波信号分别移相90°后相乘的结果,称为正交分量。

因此移相法的原理图如图3-11所示。

图3-11 SSB 移相法原理图(2)解调原理SSB 调制信号只能用相干解调方法解调。

解调原理和AM 的线性解调原理相同,解调原理图如图3-3所示。

3.4.2 SSB 调制解调仿真电路根据以上SSB 信号的调制与解调原理,用system view 仿真的电路图如图3-12所示。

图3-12 SSB调制解调仿真电路图具体设计参数为:Token0:正弦基带信号,幅度为0.5V,频率为10HZ; Token1、3、8:乘法器;Token5、6:加法器;Token4:相反器;Token2、11:正弦载波信号,幅度为1V,频率300HZ; Token10:低通滤波器,截止频率为10HZ,极点数为2。

采样频率=3000HZ,采样点数=1024。

3.4.3 SSB调制解调仿真结果与分析仿真后的波形如图3-13所示:图3-13(a)SSB下边带已调信号图3-13(b)SSB上边带已调信号图3-13(c)SSB下边带解调信号图3-13 SSB调制解调波形图其中解调后信号频谱、上边带信号频谱、下边带信号频谱及如下图3-14所示:图3-14(a)SSB下边带已调信号频谱图图3-14(b)SSB上边带已调信号频谱图图3-14(c)SSB下边带解调信号频谱图图3-14 频谱比较图分析:SSB调制信号与DSB调制信号的波形及频谱基本一致,与DSB相比较,SSB信号是将双边带信号中的一个边带滤掉而形成的,只包含了一个边带的信号,节省了带宽资源,调制效率仍是100%,带宽利用率高。

相关主题