当前位置:文档之家› 材料性能学历年真题及答案

材料性能学历年真题及答案

一、名词解释低温脆性:材料随着温度下降,脆性增加,当其低于某一温度时,材料由韧性状态变为脆性状态,这种现象为低温脆性。

疲劳条带:每个应力周期内疲劳裂纹扩展过程中在疲劳断口上留下相互平行的沟槽状花样。

韧性:材料断裂前吸收塑性变形功和断裂功的能力。

缺口强化:缺口的存在使得其呈现屈服应力比单向拉伸时高的现象。

50%FATT:冲击试验中采用结晶区面积占整个断口面积 50%时所应的温度表征的韧脆转变温度。

破损安全:构件内部即使存在裂纹也不导致断裂的情况。

应力疲劳:疲劳寿命N>105 的高周疲劳称为低应力疲劳,又称应力疲劳。

韧脆转化温度:在一定的加载方式下,当温度冷却到某一温度或温度范围时,出现韧性断裂向脆性断裂的转变,该温度称为韧脆转化温度。

应力状态软性系数:在各种加载条件下最大切应力与最大当量正应力的比值,通常用α表示。

疲劳强度:通常指规定的应力循环周次下试件不发生疲劳破坏所承受的上限应力值。

内耗:材料在弹性范围内加载时由于一部分变形功被材料吸收,则这部份能量称为内耗。

滞弹性: 在快速加载、卸载后,随着时间的延长产生附加弹性应变的现象。

缺口敏感度:常用缺口试样的抗拉强度与等截面尺寸的光滑试样的抗拉强度的比值表征材料缺口敏感性的指标,往往又称为缺口强度比。

断裂功:裂纹产生、扩展所消耗的能量。

比强度::按单位质量计算的材料的强度,其值等于材料强度与其密度之比,是衡量材料轻质高强性能的重要指标。

.缺口效应:构件由于存在缺口(广义缺口)引起外形突变处应力急剧上升,应力分布和塑性变形行为出现变化的现象。

解理断裂:材料在拉应力的作用下原于间结合破坏,沿一定的结晶学平面(即所谓“解理面”)劈开的断裂过程。

应力集中系数:构件中最大应力与名义应力(或者平均应力)的比值,写为KT。

高周疲劳:在较低的应力水平下经过很高的循环次数后(通常N>105)试件发生的疲劳现象。

弹性比功:又称弹性应变能密度,指金属吸收变形功不发生永久变形的能力,是开始塑性变形前单位体积金属所能吸收的最大弹性变形功。

二、填空题34、介质损耗的形式有电导(漏导)损耗,极化损耗,电离损耗,结构损耗,宏观结构不均匀的介质损耗。

35、光泽主要由折射率,表面粗糙度决定。

三、问答题1、衡量弹性的高低用什么指标,为什么提高材料的弹性极限能够改善弹性。

(4 分)答:衡量弹性高低用弹性比功ae=σe2/E。

由于弹性比功取决于弹性极限和弹性模量,而材质一定,弹性模量保持不变,因此依据公式可知提高弹性极限可以提高材料的弹性比功,改善材料的弹性。

2、某种断裂的微观断口上观察到河流装花样,能否认定该断裂一定属于脆性断裂,为什么?如何根据河流状花样寻找裂纹的源头。

(4 分)答:不能判定断裂一定为脆性断裂。

(1 分)韧性和脆性断了依据断口的宏观形貌和变形特征来判定,单纯从微观断口上的某些特征不能确定断裂一定属于脆断。

(2分)逆着河流的方向可以找到裂纹源。

(1 分)3、说明KI和KIC的异同。

对比KIC 和KC 的区别,说明KI 和KIC中的I 的含义。

答:KIc 代表的是材料的断裂力学性能指标,是临界应力场强度因子,取决于材料的成分、组织结构等内在因素。

KI 是力学参量,表示裂纹尖端应力场强度的大小,取决于外加应力、尺寸和裂纹类型,与材料无关。

(3 分)KIc 称为平面应变的断裂韧性,Kc 为平面应力的断裂韧性。

对于同一材料而言,KIc<Kc,平面应变状态更危险,通常以前者衡量材料的断裂韧性。

KIC 中的I代表平面应变,KI 的I 表示I 型裂纹。

(3 分)4、简述影响金属导电性的因素。

(6 分)答:(1)温度的影响:金属电阻随温度的升高而增大;(2 分)(2)冷塑性变形和应力的影响:冷塑性变形使金属的电子率增大,拉应力使电阻率上升,压应力使电阻率下降;(2 分)(3)合金化对导电性的影响:一般情况下,形成固溶体和金属化合物时电阻率增高,多相合金的电阻率与组成相的导电性、相对量及形貌有关。

(2 分)5、简述韧性断裂的微观过程及韧性断口的微观形貌特征。

(4 分)答:在三向应力的作用下,使得试样心部因夹杂物或第二相质点破裂等原因而形成微孔(微孔形核),微孔不断长大形成微裂纹,微裂纹聚合在一起形成裂纹。

微观形貌特征:韧窝。

6、格里菲斯理论的基本假设是什么,写出其方程的基本形式并说明适用条件。

答:格里菲斯理论的基本假设:实际结构中往往存在微裂纹而不是理想的状态。

(1分)a 为裂纹半长,E-杨氏模量,γ-表面能密度;(写出上面任意一个都可以)(2 分)适用条件:玻璃等脆性材料。

(1 分)7、某碳钢经不同的热处理后在相同条件下拉伸,拉伸曲线的弹性变形阶段有什么相同点,为什么。

(4 分)答:二者的弹性变形阶段往往存在线性阶段,应力与应变呈正比关系,并且斜率基本相同。

因为相同成分的钢其弹性模量E 基本保持不变,根据工程应力应变关系可知,E 为斜率则相同。

8、疲劳按照寿命如何分类。

疲劳过程由哪些阶段组成,裂纹产生的机制有哪些形式。

(6 分)答:按照寿命分为高周疲劳,低周疲劳(或者长寿命疲劳,短寿命疲劳)。

(1 分)。

疲劳过程:疲劳裂纹的形成,疲劳裂纹的扩展,(瞬时)断裂。

(2 分)裂纹产生机制:表面滑移带开裂;夹杂物与基体相界面分离或夹杂物本身断裂;晶界或亚晶界开裂。

(3 分)9、何谓低温脆性?在哪些材料中发生低温脆性?采用什么衡量材料的低温脆性。

答:随着温度下降,材料由韧性状态逐渐变为脆性状态的现象称为低温脆性。

(2分)通常体心立方金属容易发生低温脆性。

(2 分)衡量材料的低温脆性通常采用韧脆转变温度。

(2 分)10、疲劳和脆性断裂有何异同点?答:脆性断裂和疲劳断裂在断裂前都没有明显的塑性变形,属于低应力的破坏。

(2分)但是这两种断裂还是有明显的区别:在断裂完成时间上,脆性断裂一般不需要多次加载而瞬时完成,疲劳断裂需要多次加载;(2 分)温度对疲劳断裂影响不大,温度下降,脆性断裂的危险增加,温度对脆断影响大;(2 分)断口形貌上,疲劳断裂的断口一般呈现细齿状的光亮花纹,疲劳断口是光亮、平直的结晶状断口。

(2 分)11、写出下列符号的含义:V15TT,FATT50,δ10,σp, σ0, σ0.05,σ0.2, 50%FATT,σ-1,答:V15TT:以V 型切口冲击试件的冲击功AK=20.35J 对应的温度为韧脆转化温度。

FATT50:结晶状断口区所占面积为50%的温度作为的韧脆转化温度。

δ10:标距等于10d0 的长试样的伸长率。

σe:拉伸实验得到的比例极限。

σ0:脉动载荷的疲劳强度。

σ0.05:拉伸实验中得到的规定非比例伸长为0.05%对应的应力,通常用来表示弹性指标。

σ0.2/σs表示金属材料屈服强度。

50%FATT—冲击实验中结晶区面积占整个断口面接50%时所对应的温度表示的韧脆转变温度。

σ-1:对称交变载荷的疲劳强度。

12、机械正常的磨损过程有何特征,应当如何控制各个阶段。

答:机械正常磨损过程由三个阶段组成:跑合阶段,稳定磨损阶段,剧烈磨损阶段。

(2 分)在三个阶段中,要尽量减少跑合阶段,降低稳定磨损阶段的磨损率,延长稳定磨损阶段。

控制剧烈磨损造成的危害。

(2 分)13、单晶体纯金属的弹性模量与多晶体纯金属相比具有什么特点,纯铁和纯铝什么方向的弹性模量最大。

(4 分)答:单晶体的弹性模量呈现出明显的各向异性,多晶体尽管其中单个晶粒的弹性模量为各向异性,但整体上呈现各向同性,即伪等向性。

(2 分)单晶体中弹性模量最大的方向是晶体中的密排晶向。

纯铁为体心立方晶格,其最大弹性模量方向为{111},纯铝为面心立方晶格,最大弹性模量方向为{110}。

14、某拉伸断口如图,标出图中各个区域的组成,并由断口确定断裂的类型(4分)。

答:断口为韧性断裂,杯锥状断口。

(1 分)根据图示从左向右依次标注:剪切唇,纤维区,放射区。

(3 分)15、简述影响铁磁性参数的因素(9 分)答:(1)温度:温度升高使铁磁性的饱和磁化强度Ms 下降,当温度达到居里点时Ms 将为零,使铁磁材料的铁磁性消失而变为顺磁性;T 增高,Bs、Br、Hc 减小。

(2 分)(2)形变和晶粒度的影响。

(2 分)(要求展开回答,只答要点者得1 分)(3)形成固溶体及多相合金。

(2 分)(要求展开回答,只答要点者得1 分)16、20 钢扭转和拉伸,哪种没有颈缩,为什么。

(4 分)答: 20 钢扭转时没有颈缩,因为在该实验条件下,整个塑性变形在长度上均匀,故没有颈缩。

17、比较20 钢、铸铁的缺口强度和光滑试样强度的大小,哪种材料对缺口敏感。

冲击试验中哪种需要开破口,为什么(6 分)答: 20 钢的缺口强度大于光滑试样强度,铸铁则反之,因qe<1,铸铁对缺口敏感。

(4 分)为了保证冲击试验中能够冲断试样从而测得冲击功,塑性材料20 钢需要开坡口。

(2 分)18、图为哪种类型的疲劳图,横纵坐标分别表示什么;图中A、B、C 分别为何种载荷,对应的疲劳强度如何表示。

(8 分)答:该图为σmax(σmin)—σm 的疲劳图,纵坐标为σmax(σmin),横坐标为σm。

(2 分)A、B、C 分别代表对称循环载荷、静载荷、脉动载荷,相应的疲劳强度表示为σ-1、σb(B 无疲劳的问题,强度为静载强度)、σ0。

19、什么是NDT、FTP、FTE,它们的关系如何。

(4 分)答: NDT:无延性转变温度;FTP:延性断裂转变温度;FTE:弹性断裂转变温度。

(3 分)FTP=FTE+33℃=NDT+66℃(1 分)20、讨论GIc 和KIc 的关系及特点、KI 和KIC 的区别以及Gc 和GIc 的区别。

(8 分)答: KIc 代表的是材料的断裂力学性能指标,KIc 是临界应力场强度因子,又称为平面应变的断裂韧性,是常数。

GIc 称为断裂韧性,也是临界裂纹扩展力,也是材料的性能常数;二者之间存在一定的关系:KIc 称为平面应变的断裂韧性,GIc 称为断裂韧性,二者都是材料的性能常数。

KI 和GI 分别裂纹尖端的应立场强度因子和裂纹扩展力,不是性能指标常数,因裂纹形态,加载状况,材质而异。

(4 分)21、写出K 判据、G 判据、J 判据和裂纹尖端张开位移判据。

分析G 和J 的异同。

答: J 积分准则:J≥Jc 时,构件产生开裂,反之裂纹不足以导致开裂。

能量释放率准则:G≥Gc 时,构件产生断裂,反之裂纹不足以导致断裂。

裂纹尖端张开位移判据:δ≥δC 构件开裂,反之裂纹不导致开裂。

临界应力强度因子盘踞:KI≥KIC时,裂纹体处于临界状态,即将断裂;反之即使存在裂纹体也不会扩展。

G 为裂纹扩扩展的能量释放率, J 为裂纹扩展的形变功差率。

前者可以处理连续断裂的问题,后者只能处理开裂的问题不能处理是否失稳断裂。

相关主题