当前位置:文档之家› 物竞热力学专题

物竞热力学专题

热学专题一,2017年预赛 横截面积为S 和2S 的两圆柱形容器按图示方式连接成一气缸,每个圆筒中各置有一活塞,两活塞间的距离为l ,用硬杆相连,形成“工”字形活塞,它把整个气缸分隔成三个气室,其中I 、Ⅲ室密闭摩尔数分别为ν和2ν的同种理想气体,两个气室内都有电加热器;Ⅱ室的缸壁上开有一小孔,与大气相通;1 mol 该种气体内能为CT (C 是气体摩尔热容量,T 是气体的绝对温度)。

当三个气室中气体的温度均为T 1时,“工"字形活塞在气缸中恰好在图所示的位置处于平衡状态,这时I 室内气柱长亦为l ,Ⅱ室内空气的摩尔数为32ν0 .已知大气压不变,气缸壁和活塞都是绝热的,不计活塞与气缸之间的摩擦。

现通过电热器对I 、Ⅲ两室中的气体缓慢加热,直至I 室内气体的温度升为其初始状态温度的2倍时,活塞左移距离d .已知理想气体常量为R .求(1)Ⅲ室内气体初态气柱的长度;(2)Ⅲ室内气体末态的温度;(3)此过程中I 、Ⅲ室密闭气体吸收的总热量。

二,2017年复赛如气体压强-体积图所示,摩尔数为ν的双原子理想气体构成的系统经历一正循环过程(正循环指沿图中箭头所示的循环),其中自A 到B 为直线过程,自B 到A 为等温过程。

双原子理想气体的定容摩尔热容为52R , R 为气体常量。

(1)求直线AB 过程中的最高温度;(2)求直线AB 过程中气体的摩尔热容量随气体体积变化的关系式,说明气体在直线AB 过程各段体积范围内是吸热过程还是放热过程,确定吸热和放热过程发生转变时的温度c T ;(3)求整个直线AB 过程中所吸收的净热量和一个正循环过程中气体对外所作的净功。

三,2016年预赛充有水的连通软管常常用来检验建筑物的水平度.但软管中气泡会使得该软管两边管口水面不在同一水平面上.为了说明这一现象的物理原因,考虑如图所示的连通水管(由三管内径相同的U 形管密接而成),其中封有一段空气(可视为理想气体),与空气接触的四段水管均在竖直方向;且两个有水的U 形管两边水面分别等高.此时被封闭的空气柱的长度为a L .已知大气压强为0P 、水的密度为ρ、重力加速度大小为g ,()00/L P g ρ≡.现由左管口添加体积为V xS ∆=的水,S 为水管的横截面积,在稳定后: (1)求两个有水的U 形管两边水面的高度的变化和左管添水后封闭的空气柱长度;(2)当0x L 、a 0L L 时,求两个有水的U 形管两边水面的高度的变化(用x 表出)以112z ≈+,当z 《1四,2016年复赛 某秋天清晨,气温为4.0℃,一加水员到实验园区给一内径为2.00m 、高为2.00m 的圆柱形不锈钢蒸馏水罐加水。

罐体导热良好。

罐外有一内径为4.00cm 的透明圆柱形观察柱,底部与罐相连(连接处很短),顶部与大气相通,如图所示。

加完水后,加水员在水面上覆盖一层轻质防蒸发膜(不溶于水,与罐壁无摩擦),并密闭了罐顶的加水口。

此时加水员通过观察柱上的刻度看到罐内水高为1.00m 。

(1)从清晨到中午,气温缓慢升至24.0℃,问此时观察柱内水位为多少?假设中间无人用水,水的蒸发及罐和观察柱体积随温度的变化可忽略。

(2)从密闭水罐后至中午,罐内空气对外做的功和吸收的热量分别为多少?求这个过程中罐内空气的热容量。

已知罐外气压始终为标准大气压p 0=1.0×105Pa ,水在 4.0℃时的密度为 ,水在温度变化过程中的平均体积膨胀系数为 ,重力加速度大小为g =9.80m/s 2,绝对零度为-273.15℃。

五 2015年预赛如图,导热性能良好的气缸A 和B 高度均为h (已除开活塞的厚度),横截面积不同,竖直浸没在温度为T 0的恒温槽内。

它们的底部由—细管连通(细管容积可忽略).两气缸内各有一个活塞,质量分别为m A =2m 和m B =m ,活塞与气缸之间无摩擦,两活塞的下方为理想气体,上方为真空。

当两活塞下方气体处于平衡状态时,两活塞底面相对于气缸底的高度均为2h 。

现保持恒温槽温度不变,在两活塞土上面同时各缓慢加上同样大小的压力,让压力从零缓慢增加,直至其大小等于2mg (g 为重力加速度)为止。

并一直保持两活塞上的压力不变;系统再次达到平衡后,缓慢升高恒温槽的温度,对气体加热,直至气缸B 中活塞底面恰好回到高度为2h 处.求 (1)两个活塞的横截面积之比S A :S B ;(2)气缸内气体的最后的温度;(3)在加热气体的过程中.气体对活塞所做的总功。

六 2015年复赛如图,1mol 单原子理想气体构成的系统分别经历循环过程abcda 和abc a '。

已知理想气体在任一缓慢变化过程中,压强p 和体积V 满足函数关系()=p f V 。

(1) 试证明:理想气体在任一缓慢变化过程的摩尔热容可表示为V pRC C dp p V dV π=++式中,V C 和R 分别为定容摩尔热容和理想气体常数;(2)计算系统经bc '直线变化过程中的摩尔热容;(3) 分别计算系统经bc '直线过程中升降温的转折点在p-V 图中的坐标A 和吸放热的转折点在p-V 图中的坐标B ;(4)定量比较系统在两种循环过程的循环效率。

七2014年预赛1 mol的理想气体经历一循环过程1 -2 -3 -1,如p-T图示所示,过程1-2是等压过程,过程3 -1是通过p-T图原点的直线上的一段,描述过程2-3的方程为c1p2+ c2p = T和c2都是待定的常量,p和T分别是气体的压强和绝对温式中c度.已知,气体在状态1的压强、绝对温度分别为P1和T1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T2以及p3和T3.气体常量R也是已知的.(1)求常量c1和c2的值;(2)将过程1-2 -3 -1在p-v图示上表示出来;一种测量理想气体的摩尔热容比γ=Cp/CV的方法(Clement-Desormes方法)如图所示:大瓶G内装满某种理想气体,瓶盖上通有一个灌气(放气)开关H,另接出一根U形管作为压强计M.瓶内外的压强差通过U形管右、左两管液面的高度差来确定. 初始时,瓶内外的温度相等,瓶内气体的压强比外面的大气压强稍高,记录此时U形管液面的高度差h i.然后打开H,放出少量气体,当瓶内外压强相等时,即刻关闭H. 等待瓶内外温度又相等时,记录此时U形管液面的高度差h f.试由这两次记录的实验数据h i和h f,导出瓶内气体的摩尔热容比γ的表达式.(提示:放气过程时间很短,可视为无热量交换;且U形管很细,可忽略由高差变化引起的瓶内气体在状态变化前后的体积变化九2013年预赛温度开关用厚度均为的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. ) 十一 2012年预赛 由双原子分子构成的气体,当温度升高时,一部分双原子分子会分解成两个单原子分子,温度越高,被分解的双原子分子的比例越大,于是整个气体可视为由单原子分子构成的气体与由双原子分子构成的气体的混合气体.这种混合气体的每一种成分气体都可视作理想气体.在体积V =0.045m 3的坚固的容器中,盛有一定质量的碘蒸气,现于不同温度下测得容器中蒸气的压强如下:试求温度分别为1073K 和1473K 时该碘蒸气中单原子分子碘蒸气的质量与碘的总质量之比值.已知碘蒸气的总质量与一个摩尔的双原子碘分子的质量相同,普适气体常量R =8.31J·mol -1·K -1十二 2012年复赛如图所示,刚性绝热容器A 和B 水平放置,一根带有绝热阀门和多孔塞的绝热刚性细短管把容器A 、B 相互连通。

初始时阀门是关闭的,A 内装有某种理想气体,温度为;B 内为真空。

现将阀门打开,气体缓慢通过多孔塞后进入容器B 中。

当容器A 中气体的压强降到与初始时A 中气体压强之比为时,重新关闭阀门。

设最后留在容器A 内的那部分气体与进入容器B 中的气体之间始终无热量交换,求容器B 中气体质量与气体总质量之比。

已知:1摩尔理想气体的内能为,其中是已知常量,为绝对温度;一定质量的理想气体经历缓慢的绝热过程时,其压强与体积满足过程方程,其中为普适气体常量。

重力影响和连接管体积均忽略不计。

十三 2011年复赛)图示为圆柱形气缸,气缸壁绝热,气缸的右端有一小孔和大气相通,大气的压强为p 0。

用一热容量可忽略的导热隔板N 和一绝热活塞M 将气缸分为A 、B 、C 三室,隔板与气缸固连,活塞相对气缸可以无摩擦地移动但不漏气,气缸的左端A 室中有一电加热器Ω。

已知在A 、B 室中均盛有1摩尔同种理想气体,电加热器加热前,系统处于平衡状态,A 、B 两室中气体的温度均为T 0,A 、B 、C 三室的体积均为V 0。

现通过电加热器对A 室中气体缓慢加热,若提供的总热量为Q 0,试求B 室中气体末态体积和A 室中气体的末态温度设A 、B两室中气体1摩尔的内能U=5/2RT 。

R 为普适恒量,T 为热力学温度。

1T αCT u =C T pV 常量=+CR C pVR十四 2010年复赛 地球上的能量从源头上说来自太阳辐射到达地面的太阳辐射(假定不计大气对太阳辐射的吸收)一部分被地球表面反射到太空,其余部分被地球吸收.被吸收的部分最终转换成为地球热辐射(红外波段的电磁波).热辐射在向外传播过程中,其中一部分会被温室气体反射回地面,地球以此方式保持了总能量平衡。

作为一个简单的理想模型,假定地球表面的温度处处相同,且太阳和地球的辐射都遵从斯忒蕃一玻尔兹曼定律:单位面积的辐射功率 J 与表面的热力学温度 T 的四次方成正比,即 J=σT 4 ,其中σ是一个常量.已知太阳表面温度T s =5.78×103 K ,太阳半径 R s =6.69×105 km ,地球到太阳的平均距离d=1.50×108 km .假设温室气体在大气层中集中形成一个均匀的薄层,并设它对热辐射能量的反射率为ρ=0.38 .1.如果地球表面对太阳辐射的平均反射率α=0.30 ,试问考虑了温室气体对热辐射的反射作用后,地球表面的温度是多少?2.如果地球表面一部分被冰雪覆盖,覆盖部分对太阳辐射的反射率为α1=0.85 ,其余部分的反射率处α2=0.25 .间冰雪被盖面占总面积多少时地球表面温度为 273K .十五 2010年预赛 图中M 1和M 2是绝热气缸中的两个活塞,用轻质刚性细杆连结,活塞与气缸壁的接触是光滑的、不漏气的,M 1是导热的,M 2是绝热的,且M 2的横截面积是M 1的2倍。

相关主题