1、请阐述蛋白质二级结构α-螺旋、β-折叠的结构特征。
(重要)α-螺旋(1)多肽链主链围绕中心轴有规律的螺旋式上升,形成右手螺旋;(2)氨基酸侧链伸向螺旋外侧;(3)每3.6个氨基酸残基螺旋上升一周,螺距为0.54nm;(4)靠氢键维持稳定,氢键的方向和螺旋轴平行。
β-折叠(1)主链骨架伸展成锯齿状;(2)氨基酸侧链依次伸向折叠的上下两端;(3)由若干条肽段或肽链平行或反平行排列组成片状结构;(4)相邻两条β-折叠靠氢键维持稳定,氢键的方向和肽链方向垂直。
2、试述DNA与RNA的异同点(重要)(1)从分子组成上看:DNA分子的戊糖为脱氧核糖,碱基为A、T、G、C;RNA分子的戊糖为核糖,碱基为A、U、G、C。
(2)从结构上看:DNA一级结构是由脱氧核糖核苷酸通过磷酸二酯键相连,二级结构是双螺旋;RNA一级结构是由核糖核苷酸通过磷酸二酯键相连,二级结构以单链为主,也有少量局部双螺旋结构。
(3)从功能方面看:DNA为遗传物质基础,含有大量的遗传信息;RNA的功能多样化,mRNA是蛋白质生物合成的直接模板;tRNA的功能是转运氨基酸;rRNA主要构成蛋白质的合成场所;snmRNAs参与基因表达的调控。
(4)从存在部位看:DNA主要存在于细胞核,少量存在于线粒体;RNA存在于细胞核,细胞质和线粒体中。
3、简述B-DNA双螺旋结构模型的要点。
(重要)(1)DNA是反向平行的互补双链结构。
在双链结构中,亲水的脱氧核糖基和磷酸骨架位于双链外侧,碱基位于内侧,碱基之间互补配对,以氢键结合,其中腺嘌呤与胸腺嘧啶配对,形成两个氢键,鸟嘌呤与胞嘧啶配对,形成三个氢键。
由于核苷酸连接过程中严格的方向性和碱基结构对氢键形成的限制,两条多聚核苷酸链的走向呈反向平行。
(2)DNA双链是右手螺旋结构。
螺旋直径为2nm,每旋转一周包含10.5对碱基,螺距为3.54nm。
(3)碱基间的氢键维系横向稳定性,碱基平面间的疏水性堆积力维持纵向稳定性,碱基堆积力对于双螺旋的稳定性更为重要。
(4)DNA双螺旋分子表面存在一个大沟和一个小沟。
4、请描述tRNA的结构特点。
(重要)tRNA的结构特点:(1)分子量较小(一般含70~90个核苷酸);(2)含有较多稀有碱基(占10~20%);(3)二级结构为三叶草结构;(4)三级结构呈倒L型。
5、酶的可逆性抑制作用有哪几种类型?各有何特点?(1)竞争性抑制作用:指抑制剂与底物结构相似,两者竞争与酶的活性中心结合,增加底物浓度可以消除或减弱这种抑制作用,其动力学参数的变化为k m增大,V max不变。
(2)非竞争性抑制作用:抑制剂结合的不是酶的活性中心部位,所以底物与抑制剂互不影响与酶的结合,此种抑制不能靠增加底物浓度来消除或减弱。
其动力学参数的变化为k m不变,V max减小。
(3)反竞争性抑制作用:抑制剂只于酶和底物的复合物结合,其动力学参数的变化为k m减小,V max减小。
6、试用酶的竞争性抑制原理说明磺胺类药物是如何抑制细菌生长的。
(重要)对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境中的叶酸,而是在菌体内二氢叶酸合成酶的作用下,以对氨基苯甲酸等为底物合成二氢叶酸。
二氢叶酸是核苷酸合成过程中的辅酶之一四氢叶酸的前体。
磺胺类药物的化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争性抑制剂,抑制二氢叶酸的合成,细菌则因核苷酸与核酸的合成受阻而影响其繁殖。
7、糖酵解、磷酸戊糖途径、糖异生、三羧循环各有何生理意义?(重要)磷酸戊糖途径的生理意义:(1)提供NADPH+H+携带的氢不能通过电子传递链氧化产生ATP,但参与体内许多代谢反应。
(2)磷酸核糖作为核酸合成的原料。
(3)三碳,四碳,五碳,六碳,七碳通过此途径转换。
糖酵解生理意义:(1)在氧气不足时迅速提供能量,1分子葡萄糖经糖酵解净产生2分子ATP。
(2)成熟红细胞没有线粒体,糖酵解是供能的唯一方式。
另外神经、白细胞、视网膜、睾丸、骨髓等,即使不缺氧也常由糖酵解提供部分能量。
(3)酵解途径和糖有氧氧化前段过程相同。
糖异生生理意义:(1)在空腹或饥饿情况下维持血糖浓度恒定。
(2)通过糖异生补充或恢复肝糖原贮备。
(3)乳酸的再利用,在某些情况下大量产生乳酸时可异生成糖。
(4)糖异生促进肾脏排H+,缓解酸中毒的作用。
三羧循环生理意义:(1)是糖,脂肪,蛋白质最终代谢通路。
(2)是糖,脂肪,蛋白质代谢联系的枢纽。
(3)为氧化磷酸化提供还原当量。
8、血糖有哪些来源与去路?胰岛素、胰高血糖素、肾上腺素是如何调节血糖的?(重要)血糖有哪些来源与去路?来源:食物糖经消化吸收;肝糖原分解;非糖物质异生成糖。
去路:通过有氧氧化转变成H2O和CO2;合成肝或肌糖原;通过酵解生成乳酸;通过磷酸戊糖途径转变成其他糖;转变成脂肪、氨基酸等。
胰岛素、胰高血糖素、肾上腺素是如何调节血糖的?胰岛素能促进肌肉、脂肪组织细胞膜载体将葡萄糖转入细胞,促使糖原合酶活性增强,磷酸化酶活性降低,从而糖原合成加快,分解减慢;促进糖的有氧氧化;促进糖变脂肪,抑制糖异生,总效果是使血糖降低。
胰高血糖素可抑制糖原合酶,激活磷酸化酶,抑制糖酵解促进糖异生,促进脂肪动员,总的效果是调高血糖浓度。
肾上腺素促进肝糖原分解;促进肌糖原酵解生成乳酸;促进乳酸异生成糖。
9、简述蚕豆病发生的机理。
(重要)由于红细胞内缺乏磷酸戊糖途径中的限速酶6-磷酸葡萄糖脱氢酶,导致NADPH+H+生成不足,谷胱甘肽处于氧化状态,红细胞发生破裂而发生溶血性黄疸。
常在食用蚕豆后诱发,由此称蚕豆病。
10、简述柠檬酸-丙酮酸循环。
(重要)柠檬酸-丙酮酸循环:是将体内的乙酰CoA带到胞液中以合成脂酸或胆固醇的途径。
在此循环中,乙酰CoA首先在线粒体内与草酰乙酸缩合生成柠檬酸,柠檬酸通过线粒体内膜上的载体转运进入胞液;胞液中单柠檬酸裂解酶催化柠檬酸裂解释出乙酰CoA和草酰乙酸,乙酰CoA即被带到胞液中。
草酰乙酸则还原生成苹果酸,通过线粒体内膜的载体回到线粒体内。
苹果酸也可在苹果酸酶作用下,分解为丙酮酸进入线粒体,最终均形成线粒体内的草酰乙酸,在参与转运乙酰CoA。
11、1摩尔14碳的肉豆蔻酸β-氧化时产生多少摩尔FADH2和NADPH+H+?需进行几轮β-氧化?如彻底氧化生成CO2和H2O时共产生多少摩尔ATP?(重要)14碳原子的肉豆蔻酸进行6轮β-氧化;共生成6摩尔FADH2、6摩尔NADPH+H+;彻底氧化(乙酰CoA进入三羧酸循环):脂酸的活化:消耗2个ATP;β-氧化:4×6=24;三羧酸循环:10×7=70;共产生:24+70-2=92摩尔ATP。
12、简述胆固醇在体内的合成过程(注明原料、部位、限速酶)。
合成:原料:乙酰CoA;部位:胞液及内质网;限速酶:HMG CoA还原酶。
13、概述氨基酸代谢的概况。
(重要)氨基酸代谢概况:主要来源有:(1)食物蛋白质的消化吸收;(2)组织蛋白质的分解;(3)体内合成的非必需氨基酸。
主要去路有:(1)合成组织蛋白质;(2)脱氨基作用生成α-酮酸并释放氨;(3)脱羧基作用生成胺类和CO2;(4)转变成一些重要的含氮化合物如:儿茶酚胺、肌酸、嘌呤和嘧啶等。
14、血氨的来源与去路有哪些途径?(重要)血氨的来源:(1)体内氨基酸脱氨基作用和胺类的分解产生的氨;(2)肠道吸收的氨,它包括①肠道内氨基酸在肠道细菌作用下产生的氨;②肠道尿素经细菌尿素酶水解产生的氨;(3)肾小管上皮细胞分泌的由谷氨酰胺酶水解谷氨酰胺产生的氨。
血氨的去路:(1)在肝脏通过鸟氨酸循环生成尿素,经肾脏排出;(2)在肌肉、脑等组织经谷氨酰胺合成酶作用生成无毒的谷氨酰胺;(3)在肾脏生成铵盐随尿排出;(4)通过脱氨基作用的逆反应,再合成非必需氨基酸;(5)参与其他含氨化合物的合成。
15、氨在体内是如何运输的?其有何重要生理意义?(非常重要)(1)丙氨酸-葡萄糖循环:在肌肉组织中,氨基酸经过转氨基作用将氨基转给丙酮酸生成丙氨酸,然后丙氨酸释放入血随血液循环运往肝脏,经联合脱氨基作用将氨释放并用于合成尿素。
转氨后生成的丙酮酸可经糖异生作用合成葡萄糖,葡萄糖由血循环运往肌肉组织,经糖代谢途径进行分解并转变成丙酮酸,然后在接受氨基生成丙氨酸,如此周而复始的在肌肉与肝脏之间进行氨的传递。
其生理意义在于将肌肉组织中的氨以无毒的丙氨酸形式运往心脏,同时肝脏又为肌肉组织提供生成丙酮酸的葡萄糖。
(2)谷氨酸胺:在脑和肌肉等组织中氨生成谷氨酰胺转运到肝或肾,谷氨酰胺既是氨的解毒形式,又是氨的储存及运输形式。
Glu+NH3+ATP→Gln+ADP+Pi生成谷氨酰胺的生理意义:①用于合成组织蛋白质;②作为血氨的运输形式,将脑、肌肉等组织中的氨运往肝、肾组织;③用于合成嘌呤、嘧啶等重要含氨化合物;④水解生成谷氨酸,然后进一步代谢。
16、核苷酸的抗代谢产物有哪些?其作用机制如何?(重要)核苷酸的抗代谢产物是一些嘌呤、嘧啶、氨基酸、叶酸及核苷等的类似物,他们主要以竞争性抑制来干扰或阻断核苷酸的合成。
从而进一步影响核酸及蛋白质的生物合成。
次黄嘌呤类似物有6-巯基嘌呤,其在体内可转变为6-巯基嘌呤核苷酸,抑制IMP转变为AMP 或GMP的反应,还可通过竞争性抑制腺嘌呤核酸核糖转移酶及次黄嘌呤-鸟嘌呤磷酸核糖转移酶而阻止补救合成途径,同时经过反馈抑制PRPP酰胺转移酶,从而阻断嘌呤核苷酸的从头合成;5-氟尿嘧啶的结构域胸腺嘧啶相似,在体内转变成FdUMP和FUTP。
FdUMP与dUMP 结构相似,是胸苷酸和酶的抑制剂,使dTMP合成受到阻断;FUTP可以FUMP的形式参入RNA 分子,异常核苷酸的参入破坏了RNA的结构和功能。
谷氨酰酸的类似物为氮杂丝氨酸,干扰谷氨酰胺提供合成嘌呤及嘧啶的氮源。
叶酸类似物有氨蝶呤和甲氨蝶呤,能竞争性抑制二氢叶酸还原酶的活性。
核苷类似物阿糖胞苷能抑制CDP还原成dCDP,影响DNA合成。
17、简述CPS-Ⅰ与CPS-Ⅱ的异同点。
(重要)相同点:二者均可催化底物生成氨基甲酰磷酸。
不同点:(1)存在的细胞部位不同;CPS-Ⅰ存在于肝细胞的线粒体,而CPS-Ⅱ存在于细胞的胞液;(2)酶所催化的底物不同:CPS-Ⅰ所催化的底物为CO2、NH3、和H2O,而CPS-Ⅱ所催化的底物为谷氨酰胺和HCO3—;(3)所生成的氨基甲酰磷酸最终生成的物质不同:CPS-Ⅰ主要用于尿素的合成,而CPS-Ⅱ主要用于嘧啶核苷酸的生成;(4)临床意义不同:CPS-Ⅰ可作为肝细胞是否成熟的指标,而CPS-Ⅱ的异常增高可作为临床检查肿瘤的标志。
18、下图为电子显微镜下的原核生物转录现象,请给予解释。
粗线部分为DNA,细线部分为RNA。
(重要)说明在同一DNA木板上有多个转录同时在进行。