2014-2015学年第二学期《通信技术与系统》课程实验报告所在学院:电子工程学院学生姓名:学生学号:任课老师:2015年6月 18日实验1 模拟信号源实验一、实验目的1.了解本模块中函数信号产生芯片的技术参数; 2.了解本模块在后续实验系统中的作用;3.熟悉本模块产生的几种模拟信号的波形和参数调节方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G 2.频率计1台3.20M 双踪示波器1台 4.小电话单机1部三、实验原理本模块主要功能是产生频率、幅度连续可调的正弦波、三角波、方波等函数信号(非同步函数信号),另外还提供与系统主时钟同源的2KHZ 正弦波信号(同步正弦波信号)和模拟电话接口。
在实验系统中,可利用它定性地观察通信话路的频率特性,同时用做PAM 、PCM 、ADPCM 、CVSD (∆M )等实验的音频信号源。
本模块位于底板的左边。
1.非同步函数信号它由集成函数发生器XR2206和一些外围电路组成,XR2206芯片的技术资料可到网上搜索得到。
函数信号类型由三档开关K01选择,类型分别为三角波、正弦波、方波等;峰峰值幅度范围0~10V ,可由W03调节;频率范围约500HZ ~5KHZ ,可由W02调节;直流电平可由W01调节(一般左旋到底)。
非同步函数信号源结构示意图,见图2-1。
图2-1 非同步函数信号源结构示意图 2.同步正弦波信号它由2KHz 方波信号源、低通滤波器和输出放大电路三部分组成。
2KHz 方波信号由“时钟与基带数据发生模块”分频产生。
U03及周边的阻容网络组成一个截止频率为2KHZ 的低通滤波器,用以滤除各次谐波,只输出一个2KHz 正弦波,在P04可测试其波形。
用其作为PAM 、PCM 、ADPCM 、CVSD (∆M )等模块的音频信号源,其编码数据可在普通模拟示波器上形成稳定的波形,便于实验者观测。
W04用来改变输出同步正弦波的幅度。
同步信号源结构示意图,见图2-2。
K01U01跟随放大器XR2206 电 路三角波 正弦波 方波P03图2-2 同步函数信号源结构示意图3. 模拟电话输入电路本模块提供了两路用户模拟电话接口,图2-3是其电路结构示意图。
J02A/ J02B 是电话机的水晶头接口,U01是PBL38614专用电话集成电路。
它的工作原理是:当对电话机的送话器讲话时,该话音信号从PBL38614的TR 对应的引脚输入,经U01内部二四线转换处理后从T 端输出。
T 端的模拟电话输出信号经P05/ P07铜铆孔送出,可作为语音信号输出用。
当接收对方的话音时,送入U01芯片R 端的输入信号可由P06/P08铜铆孔送入。
此时,在电话听筒中即可听到送入信号的声音。
图2-3 用户电话结构示意图四、实验内容及步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G ”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电:打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3. 非同步函数信号源测试:频率计和示波器监测P03测试点,按上述设置测试非同步函数信号源输出信号波形,记录其波形参数。
4.同步正弦波信号源测试:南京润众科技有限公司U034U01跟随放大器P04CPLD 器 件 低通 滤波器南京润众科技有限公司U01J02A\BP05/P07PBL38614电话接口 芯片P06/P08TRT RU04频率计和示波器监测P04测试点,按上述设置测试同步正弦波信号源输出信号波形,记录其波形参数。
5.用户电话测试:1)电话模块接上电话单机,说话或按住某个数字键不放,用示波器测试其发端波形。
2)用信号连接线连接P03与P06(或P08)铆孔,即将函数信号送入电话的接收端,调节信号的频率和幅度,听听筒中发出的声音。
6. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
五、实验记录1.正弦波幅度2.02V 频率10.33kHz2.三角波幅度3.60V 频率10.3kHz3.方波幅度6.30V 频率10.3kHz实验2 接收滤波器与功放实验一、实验目的1.了解接收滤波器与功放模块的组成结构; 2.掌握接收滤波器与功放模块的使用方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G 2.20M 双踪示波器1台 3.信号连接线2根三、实验原理本实验模块位于底板的右边,由低通滤波器、低频功放、喇叭等组成。
可作为PAM 、PCM 、CVSD 等通信模块的接收终端。
其组成结构示意图,如图4-1所示。
图4-1 终端滤波放大器结构示意图外加信号通过P14铆孔送入低通滤波器电路,“时钟与基带数据发生模块”上的拨码器4SW02可设置低通滤波器的多种截止频率。
经过低通滤波器滤波后的信号,可在P15测试点进行观测。
滤波后的信号接着送入LM386构成的低频功率放大器,驱动小喇叭播放出声音, W09可调节喇叭音量大小。
实验者通过本模块喇叭播放功能,可感性的判断音频信号经编解码信道的传输质量。
1.模拟滤波器的特性模拟滤波器的理论和设计方法已发展得相当成熟,且有若干典型的模拟滤波器供我们选择,且都有严格的设计公式、现成的曲线和图表供设计人员使用。
典型的模拟滤波器:巴特沃斯 Butterworth 滤波器:幅频特性单调下降切比雪夫 Chebyshev 滤波器:幅频特性在通带或者在阻带有波动 贝塞尔 Bessel 滤波器:通带内有较好的线性相位持性 椭圆 Ellipse 滤波器低通 滤波器 功率 放大器P15P14K044SW02 拨码器模拟滤波器按幅度特性可分成低通、高通、带通和带阻滤波器,它们的理想幅度特性如图所示。
2.模拟低通滤波器的指标模拟低通滤波器的设计指标有αp, Ωp,αs和Ωs。
Ωp;通带截止频率Ωs:阻带截止频率αp:通带中最大衰减系数αs;阻带最小衰减系数αp和αs一般用dB数表示。
对于单调下降的幅度特性,可表示成如果Ω=0处幅度已归一化到1,即|H a(j0)|=1,αp和αs表示为以上技术指标用图所示。
图中Ωc称为3dB截止频率,因四、实验设置4SW02:设置滤波器的截止频率。
设置和参考截止频率如下(4SW02拨码器:往上为1,往下为0):01010:滤波器截止频率2.65KHZ01011:滤波器截止频率5.3KHZ01100:滤波器截止频率10.6KHZK04:小喇叭开关。
”ON”接通喇叭,,“OFF”断开喇叭。
W09:音频功率放大器输出功率的调节电位器,注意音量不可调节太大。
P14:外加模拟信号输入连接铆孔。
P15:经滤波器滤波后输出连接铆孔。
五、实验内容及步骤1.插入有关实验模块在关闭系统电源的条件下,将“时钟与基带数据发生模块”,插到底板“G”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。
注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。
2.加电打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常原因。
3.滤波器测试用信号源选择与调节采用非同步函数信号选择正弦波档,用示波器和频率计监测P03测试点,调节W02使其频率最低,峰峰值4V左右。
如用其它音频信号源亦可。
4.信号线连接用专用导线将P03、P14两铆孔连接,将测试信号送入后面的“接收端滤波放大模块”。
5.截止频率2.65K滤波器测试设置“时钟与基带数据发生模块”上的4SW02拨码器为01010用示波器监测P15测试点,调节W02,测试其滤波器截止频率并作记录。
(P15输出的信号幅度下降至P14输入信号幅度的0.707时所对应的频率为滤波器的截止频率。
)6.截止频率5.3K滤波器测试设置“时钟与基带数据发生模块”上的4SW02拨码器为01011用示波器监测P15测试点,调节W02,测试其滤波器截止频率并作记录。
注:1)测试过程中可将喇叭关闭,避免噪声干扰;测试的数据可作为后续实验参考。
2)当进行CVSD编译码和复接、解复接等后续实验时,将默认滤波器截止频率为2.65KHZ。
因此,本实验中4SW02拨码器应设置为01111。
7. 关机拆线实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
六、实验数据实验3 CPLD可编程逻辑器件实验一、实验目的1.了解ALTERA公司的CPLD可编程器件EPM240;2.了解本模块在实验系统中的作用及使用方法;3.掌握本模块中数字信号的产生方法。
二、实验仪器1.时钟与基带数据发生模块,位号:G2.20M双踪示波器1台3.频率计1台三、实验原理CPLD可编程模块(时钟与基带数据发生模块,芯片位号:4U01)用来产生实验系统所需要的各种时钟信号和数字信号。
它由CPLD可编程器件ALTERA公司的EPM240、下载接口电路(4J03)和一块晶振(4JZ01)组成。
晶振用来产生16.384MHz系统内的主时钟,送给CPLD芯片生成各种时钟和数字信号。
本实验要求实验者了解这些信号的产生方法、工作原理以及测量方法,理论联系实践,提高实际操作能力。
m序列是最被广泛采用伪随机序列之一,除此之外,还用到其它伪随机码,如Gold序列等,本模块采用m序列码作为系统的数字基带信号源使用,在示波器上可形成稳定的波形,方便学生观测分析。
下面介绍的m序列原理示意图和仿真波形图都是在MAX+PLUS II软件环境下完成。
其中,RD输入低电平脉冲,防止伪随机码发生器出现连0死锁,其对应仿真波形的低电平脉冲。
CLK为时钟脉冲输入端。
OUT为m序列伪随机码输出。
下图3-1、图3-2为三级m序列发生器原理图和其仿真波形图。
在实验模块中的clk为2KHZ时钟,输出测试点为4P02,m序列输出测试点为4P01。
图3-1 三级m序列发生器原理图(M=7)图3-2 三级m序列仿真波形图下图3-3、图3-4为四级m序列发生器原理图和其仿真波形图。
图3-3 四级m序列发生器原理图(M=15)图3-4 四级m序列仿真波形图下图3-5、图3-6为五级m序列发生器原理图和其仿真波形图。
图3-5 五级伪随机码发生器原理图图3-6 五级伪随机码仿真波形图图3-7中介绍是异步四级2分频电路,其特点是电路简单,但由于其后级触发器的触发脉冲要待前级触发器的状态翻转之后才能产生,因此其工作速率较低。
在对分频输出时钟的相位关系要求严格的情况下,一般采用同步分频法,具体实现原理请同学自己整理。
图3-8为异步四级2分频电路仿真波形图。
图3-7 四级2分频原理图图3-8 四级2分频仿真波形图另外,在本模块上设计了一个8位的拨码器和一个5位的拨码器。