当前位置:文档之家› 电气工程及其自动化专业本科毕业论文

电气工程及其自动化专业本科毕业论文

电气工程及其自动化专业本科毕业论文Last revision date: 13 December 2020.可控励磁发电系统综合性实验的设计摘要现代电力系统的发展,对同步发电机励磁控制提出了更高要求。

发电机在正常工作情况下,负载总在不断地变化着。

而不同容量的负载,以及负载的不同功率因数,对同步发电机励磁磁场的反映作用是不同的,要维持同步发电机端电压为一定水平,就必须根据负载的大小及负载的性质随时调节同步发电机的励磁。

在各类电站中,励磁系统是保证同步发电机正常工作,提高电网稳定水平的关键设备。

同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的可靠性方面都起着十分重要的意义。

本文主要对可控励磁发电系统进行了实验设计,首先对可控励磁发电系统做了相关简介并探讨了可控励磁发电系统的国内外未来发展形势。

本文着重在可控励磁系统中的过励限制方面作了重点分析,并设计了相关的一个过励限制特性试验,对过励限制系统加深了了解。

关键词电力系统;励磁控制系统;过励限制Integrated power system excitation control design of experimentAbstractThe development of modern power system, synchronous generator excitation control on a higher requirement. Generators in normal circumstances, the total load is constantly changing. And different load capacity and load of different power factor, synchronous generator excitation field on the reflection of the role is different, to maintain the synchronous generator terminal voltage to a certain level, it must be based on load size and the nature of the load regulation at any time synchronization power generator. In various power plant, synchronous generator excitation system is to ensure that work to improve the level of power and stability of key equipment. Synchronous generator excitation control in power quality assurance, rational allocation of reactive power and improve reliability of power system operations and play an important role.This paper mainly controlled experimental excitation power system design, first generation system as a controllable excitation profile and the related power system excitation control of the future development of the situation at home and abroad. This article focuses on the controlled excitation system overexcited restrictions were analyzed, and design-related characteristics of an overexcited limit test, the system had exciting limit to deepen understanding.Keywords:power system;excitation control system;overexcited limit目录摘要 (I)Abstract (Ⅱ)第1章绪论1.1发电机励磁控制系统简介同步发电机的励磁装置是同步发电机的重要组成部分,它是供给同步发电机的励磁电源的一套系统。

励磁装置一般由两部分组成,一部分用于向发电机提供直流电流以建立直流磁场,通常称作励磁功率输出部分;另一部分用于在正常运行或发电机发生故障时调节励磁电流以满足安全运行的需要,通常称作励磁控制部分(或称控制单元,亦称励磁调节器)。

同步发电机的运行特性与它的气隙电势Eq值的大小有关,而Eq的值是发电机励磁电流IL的函数,改变励磁电流就可影响同步发电机在电力系统中的运行特性。

因此对同步发电机的励磁进行控制,是对发电机的运行实施控制的重要内容之一。

电力系统正常运行时,发电机励磁电流的变化主要影响电网的电压水平和并联运行机组间无功功率的分配。

在某些故障情况下,发电机端电压降低将导致电力系统稳定水平下降。

为此,当系统发生故障时,要求发电机迅速增大励磁电流,以维持电网的电压水平及稳定性。

可见,同步发电机励磁的自动控制在保证电能质量、无功功率的合理分配和提高电力系统运行的稳定性及可靠性的方面都起着重要的作用。

同步发电机的励磁系统一般由励磁功率单元和励磁调节器两个部分组成。

如图1-1所示。

励磁功率单元向同步发电机转子提供直流电流,即励磁电流;励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出。

整个励磁自动控制系统是由励磁调节器、励磁功率单元和发电机构成的一个反馈控制系统。

图1-1 同步发电机励磁控制系统构成示意图在电力系统发展初期,同步发电机容量较小,励磁电流通常由与发电机组同轴的直流发电机供给,即直流励磁机方式。

随着发电机容量的提高,所需励磁电流也随之增大,而直流励磁机由于存在机械整流环,功率过大时制造存在困难,因此在大容量的发电机组上很少采用。

同步发电机半导体励磁系统中的直流励磁电流是通过把交流励磁电源经半导体整流后得到的。

根据交流励磁电源的不同种类,同步发电机半导体励磁系统又可分为两大类:1.他励半导体励磁系统这类励磁系统采用与主发电机同轴的交流发电机作为交流励磁电源,经二极管、晶闸管或全控功率器件进行整流后,供给发电机励磁;这类励磁系统由于交流励磁电源取自轴功率,即主发电机之外的独立电源,故称为他励半导体励磁系统,简称他励系统。

用作励磁电源的同轴交流发电机称为交流励磁机。

2.自励半导体励磁系统这类励磁系统通常采用变压器提供交流励磁电源,励磁变压器接在发电机机端或厂用电母线上。

因励磁电源取自发电机自身或发电机所在的电力系统,故这种励磁方式称为自励励磁系统,简称自励系统。

励磁控制系统的作用在发电机正常运行条件下,励磁系统应维持发电机机端(或指定控制点)电压在给定水平。

通常当发电机负荷变化时,发电机机端电压将随之变化,这时,励磁系统将自动的增加或减少发电机的励磁电流,使机端电压维持在一定的水平上,保证有一定的调压精度。

当机组甩负荷时,通过励磁系统的快速调节作用,应限制机端电压不致过分升高。

维持发电机机端(或制定控制点)电压在给定水平上是励磁控制系统最基本和最重要的作用。

当系统受到小的扰动后,发电机能继续保持与系统同步运行特性称为电力系统的静态稳定性。

现代电力系统的发展趋势是增大输送距离和提高输送功率。

这需要解决许多技术问题。

而其中最重的和最基本的困难之一是同步发电机只具有较小的静态稳定性。

但由于自动励磁的调节装置的出现,使这一问题得到了圆满的解决。

我们知道,对于一条交流输电线路,在不计电阻损耗的前提下,其上流动的有功功率P 与线路两端电压1U 、2U ,线路电抗X 间的关系为:12sin U U P Xδ= (1-1) 其中,δ为两端电压之间的电角度差。

在δ=90o 时线路达到所能输送的极限功率,即对于单机——无穷大母线系统,不考虑凸极效应和定子电阻。

发电机送出的有功功率P 可用以下两式表示sin q s eq Eq d T L E U P X X X δ=++ (1-2) sin t s Ut Ut T LU U P X X δ=+ (1-3)式中:Eq δ为E q 与U s 间的电角度差;Ut δ为U t 与U s 间的电角度差;X d 为发电机同步电抗;X t 为变压器电抗;X L 为线路电抗;E q 为发电机空载电动势(励磁电动势);U t 为发电机机端电压;Us 为无穷大母线电压。

在发电机不进行励磁调节,即E q =E q0不变的条件下,极限功率角为Eq δ=90o ,线路所能传送的静稳极限功率为:mEq q s d T L E U P X X X =++ (1-4)当有励磁调节器,并且具有足够能力维持发电机端电压为恒定不变时,极限功率角为Ut δ=90o ,此时线路所能输送的静稳极限功率为t s mUt T LU U P X X =+ (1-5) 由于同步发电机内电抗较大,通常P mUt 要大于P mEq 。

这样,发电机励磁调节器实际上起到了补偿发电机内电抗的作用。

最初的复励和电压校正器由于允许的反馈增益系数较小,通常只相当于补偿掉'dd X X -那一段内阻抗,这时静稳功率极限只提高到'q E 维持不变的功角特性最大值。

灵敏快速的励磁调节器可以维持发电机机端电压恒定,相当于补偿了全部发电机的d 轴同步电抗,即达到线路静稳功率极限。

电力系统的暂态稳定性是指系统遭受到大干扰(如短路,断线等)时,能否维持同步运行的能力。

总的来说,调节励磁对暂态稳定的改善没有对静态稳定那样显着。

励磁系统对提高暂态稳定而言,表现在强行励磁和快速励磁的作用上。

当系统受到小的扰动后,发电机能继续保持与系统同步运行特性称为电力系统的静态稳定性。

现代电力系统的发展趋势是增大输送距离和提高输送功率。

这需要解决许多技术问题。

而其中最重的和最基本的困难之一是同步发电机只具有较小的静态稳定性。

但由于自动励磁的调节装置的出现,使这一问题得到了圆满的解决。

只有励磁电压上升快速并且顶值电压高的励磁系统对于改善暂态稳定才有较显着的作用,快速强励可减少加速面积,增加减速面积,提高系统的暂态稳定性。

由于提高励磁系统的强励倍数受到励磁系统和发电机制造成本的制约以及发电机转子时间常数较大使励磁电流上升速度受到限制等原因,使得靠励磁控制来提高暂稳极限的幅度不可能像提高静稳极限那么显着,但其提高暂稳极限的效益还是明显的。

相关主题