当前位置:文档之家› Caspase与细胞凋亡

Caspase与细胞凋亡

Caspase与细胞凋亡Caspase与细胞凋亡沈阳市第一人民医院神经内科(110041)李莉摘要:细胞凋亡,又称程序性细胞死亡(Programmed cell death, PCD)是机体生长发育、细胞分化和病理状态中细胞自主性死亡过程。

是细胞内由基因编码调控的按严格程序执行的细胞自杀过程。

细胞凋亡是细胞生长发育过程的重要生命现象,是目前生物医学领域中的一个重要研究课题。

阐明细胞凋亡的分子机制可对一些疾病的防治(如肿瘤,神经退行性疾病等)产生积极影响。

许多实验提示细胞凋亡涉及一个瀑布式(Cascade)基因表达过程。

半胱氨酸蛋白酶(Caspase)在细胞凋亡中发挥始动和效应作用。

本文就其生物学特性及其在凋亡中的作用机制作一综述。

关键词:Caspase;细胞凋亡细胞凋亡的原词Apoptosis由两个拉丁字组成。

Apo指离开,ptosis是落下,意思是细胞凋亡有如秋天落叶,到一定时候即失去生命力,遂即脱落,细胞凋亡,又称程序性细胞死亡(Programmed cell death,PCD)是机体生长发育、细胞分化和病理状态中细胞自主性死亡过程,是细胞内由基因编码调控的,按严格程序执行的细胞自杀过程。

通常需要30到60分钟,细胞凋亡形态学上的变化主要有DNA破碎,染色质凝集,细胞皱缩,线粒体肿胀和凋亡小体形成,而整个过程的结束以凋亡小体被吞噬为标志。

多数类型细胞在凋亡的最后阶段发生细胞核DNA的降解:DNA降解成180-200bp或其倍数的片段,因此在琼脂糖凝胶电泳上可见到有特征性的梯形图谱。

目前对凋亡的研究深入到分子水平,发现多种半胱氨酸蛋白酶(Cysteine aspartase)在细胞凋亡之中发挥着重要作用。

1、什么是Caspase通过对美丽线虫(nematode caenorhabditis elegans)的细胞死亡机制的研究发现,至少有3个基因直接参与了细胞凋亡的调节。

ced-3、ced-4直接介导细胞死亡,为促凋亡基因,其编码的蛋白分别为CED-3、CED-4、ced-3在细胞中起关键作用,称为线虫自杀基因,CED-3则称为死亡蛋白酶;ced-9则拮抗其作用,为抗凋亡基因,其编码的蛋白质为CED-9。

后来发现CED-3与哺乳动物的白介素-1β转换酶(Caspase-1,原名为interleukin-1β-converting enzyme,ICE)具有高度同源性,CED-4,CED-9则分别与Apaf-1(apoptosis protease-activating factor-1)、Bcl-2同源。

Bcl-2基因家族产物包括促进及抑制凋亡的两个蛋白质亚群[1]。

哺乳动物的ICE 类蛋白是一组半胱氨酸蛋白酶[2];且有以下共同特点:①和ICE有同源性;②有高度保守QACXG(X为R、Q或G)五肽序列[3];③有发挥酶活性所必须的半胱氨酸;④特异地裂解天门冬氨酸位点;⑤前体蛋白均无活性,均需经蛋白水解后才产生活性;⑥转染不同细胞可诱导凋亡。

因它们均具有半胱氨酸和天门冬氨酸裂解位点,Alnemri将其命名为Caspase,其基因用Casp表示[4];“C”代表半胱氨酸蛋白酶机制,aspase表示其能特异切割底物中在天冬氨酸(asp)后的肽键能力。

目前在哺乳动物中发现至少16种Caspase,按其发现的先后顺序命名为Caspase-1~Caspase-16[5]。

2、Caspase的生物学特性2.1 Caspase的结构特点Caspase家族有相似的氨基酸序列,结构和底物特异性,通常以无活性的蛋白酶原(procaspase)形式存在细胞内合成和分泌(30-50KD)。

后者由4个亚区组成:NH2-末端区(Prodomain)、大亚基(P17-20)、小亚基(P10-12)及连接大小亚基的连接区;各亚区间经蛋白水解后释放出Prodomain及连接区,使大小亚基结合成一活性的异四聚体并暴露出底物识别,结合和催化所需的氨基酸残基,即形成了活性的Caspase;Procaspase可自我催化及催化其他Procaspase产生活性蛋白酶,其蛋白水解级联功能类似凝血因子活化的“瀑布效应”[6]。

Caspase的作用特点是能识别底物裂解位点NH2末端最少4个氨基酸并在天门冬氨酸后裂解底物,从而使其蛋白裂解行为具有高选择性。

不同的Caspase因所识别的4个氨基酸的不同而具有明显的底物特异性,从而发挥各自不同的生物学功能。

2.2 Caspase家族成员及分类Caspase分类较为复杂,通常根据蛋白酶序列的相似性分为三个亚族:Caspase-1亚族(Caspase-1、4、5、13);Caspase-2亚族(Caspase-2、9)和Caspase-3亚族(Caspase-3、6、7、8、10)。

在Caspase家族成员中,Caspase-1、2、4、5、8、9、10、11等为调控Caspase,参与打靶和激活调控;Caspase-3、6、7、12、14等为效应Caspase,即参与凋亡的效应物。

Caspase-1(白介素-1β-转换酶,ICE)是该家族中第一个被鉴定的成员,但它在细胞凋亡中并无十分明显的作用,主要参与IL-1β的成熟和转运。

Caspase-8是启动者Caspases的重要代表,可通过与连接分子FADD的结合而活化,将凋亡信号传递到下游的效应Caspases分子。

Caspase-14是该家族中的最新成员,主要表达于胚胎细胞中,成年期缺乏表达,由于分子结构中没有NH2-末端域,因此又被称为MICE(mini-ICE)。

功能研究发现它能直接诱导细胞凋亡,但具体的信号转导途径高不清楚[7]。

并不是所有Caspase都参与细胞凋亡反应,如Caspase-1、4、5、12等的作用主要是参与炎症反应。

Caspase-3是迄今为止研究比较透彻的一个,它是主要的效应者分子。

1994年Femandes-Alnemri等在人Jurkat T细胞系,首先克隆出CPP32(Caspase-3)基因,分为CPP32α和CPP32β。

两者的阅读框均由831个核苷酸组成,编码277个氨基酸,相对分子质量约为32×103(32KD)。

人Caspase-3基因定位于染色体4q33-q35.1处。

Caspase-3酶原与CED-3蛋白有35%的一致性,58%的相似性,是已知哺乳动物中与CED-3相似性最高的一种。

目前推测,Caspase-3酶原上有4个酶切位点Asp9、Asp28(亦称P3切割点)、Asp175(亦称P17切割)和Asp181,后两个位点的切割产生P20(1-175氨基酸)和P11(181-277氨基酸)大小亚基,大亚基进一步在Asp28处切割去掉N末端前肽,而Asp9处的切割产生P19大亚基,其与Caspase-3酶原的自身活化有关。

被切割形成的大亚基、小亚基结合成α2β2四聚体,成为有活性的酶。

在蛋白酶级联切割过程中,Caspase-3处于核心位置,不同的蛋白酶分别切割Caspase-3酶原,从而激活Caspase-3;活化的Caspase-3又进一步切割不同的底物,导致蛋白酶级联切割放大,最终使细胞走向死亡[8]。

因此Caspase-3被称为死亡蛋白酶。

2.3 Caspase的活化Caspase的活化有两条主要途径[6,9]。

一条由DD(death domain)介导,将Caspase-8募集到Fas(即CD95)、TNFR-1、DR3等受体复合物途径。

细胞膜上的Fas、TNFR-1、DR3等死亡受体均含有DD,Caspase-8、10等则含有DED (death-effector domain),而procaspase-1,2,4,5,9含CARD (caspase recruitment domain)。

DD、DED、CARD结构极其相似,可相互作用,在Caspase的活化中起关键的接合作用,称为接合器(adaptor)。

以Fas受体为例,Fas受体激活后,FADD与募集而来的procaspase-8的DED结合形成信号复合物,使procaspe-8自我水解、活化,形成活性Caspase-8,后者再激活Caspase3、6、7等。

另一途径由细胞色素C(cyto-c)介导。

细胞内外各种死亡信号可诱导线粒体释放cyto-C。

cyto-C再与Apaf-1结合,使Apaf-1发生构象改变,继而寡聚化。

然后,Apaf-1的CARD区与Procaspase-9的N-末端的CARD区结合,形成cyto-c-Apaf-1-Procaspase-9“凋亡体”(apoptosome),从而使Procaspase-9活化并激活下游其他Caspase。

2.4 Caspase活化的调节Caspase的活化可引起细胞凋亡。

那么机体是如何抑制Caspase的过度激活百不发生病理性凋亡的呢?已知有三大类蛋白质参与Caspase活化的调节。

2.4.1 FLIP与ARC目前发现有两种蛋白参与Caspase初始活化的调节即FLIP(FADD样的ICE抑制蛋白)和ARC(含有CARD的凋亡抑制蛋白)。

[4、10]从Caspase的激活途径可以看出:调节Procaspase与接合蛋白的相互作用可抑制Caspase的活化。

研究发现FLIP除没有关键的催化残基外,其序列与Procaspase-8相似,可与Procaspase-8竞争FADD的结合位点,达到阻止Caspase活化的目的;ARC可直接与多种Procaspase结合而阻止其活化。

2.4.2 Bcl-2家族Bcl-2家族可调节cyto-c的释放,从而调节cyto-c介导的Caspase的活化[6,11]。

Bcl-2家族成员是一组通道蛋白。

主要位于线粒体、内质网及细胞核的外膜。

BAX通过协助线粒体释放cyto-c而促凋亡;Bcl-2和Bcl-xL则可拮抗Bax的作用而明显抑制凋亡。

另外,Bcl-2家族成员还可能直接与CED-4/Apaf-1结合,抑制cyto-c-Apaf-1-procaspase-9复合物的形成而阻止Caspase-9的激活;而Bax等其他促凋亡的家族成员则拮抗此种作用,增强CED4/Apaf-1的活性。

2.4.3 IAP(inhibitors of apoptosis protein)家族迄今,IAP家族是哺乳动物唯一的内源性Caspase抑制剂。

[12]它包括神经元凋亡抑制蛋白(neuronal apoptosis inhibitory protein,NAIP)、X染色体凋亡抑制剂(X chromosome-linked inhibitor of apoptosis,XIAP)、人凋亡抑制剂(human inhibitor of apoptosis,HIAP)、Survivin等,可特异性地抑制Caspase-3、7、9的活性,使始动Caspase及效应Caspase均受抑制而达到抗凋亡目的。

相关主题