当前位置:文档之家› 专题三力与运动牛顿定律Word版

专题三力与运动牛顿定律Word版

《新课标》高三物理(人教版)第二轮专题讲座物理1 必修教材(必考内容)专题三力和运动牛顿运动定律课时安排:2课时教学目标:1.深入理解力和运动的关系、知道动力学的两类基本问题;学会处理动力学问题的一般思路和步骤2.应用牛顿运动定律解决实际问题,提高分析解决实际问题的能力本讲重点:牛顿运动定律的应用本讲难点:1.力和运动的关系2.牛顿运动定律的应用一、考纲解读本专题涉及的考点有:牛顿运动定律及其应用;超重和失重。

《大纲》对牛顿运动定律及其应用为Ⅱ类要求,对超重和失重为Ⅰ类要求。

牛顿定律是历年高考重点考查的内容之一。

对这部分内容的考查非常灵活,各种题型均可以考查。

其中用整体法和隔离法处理牛顿第二定律,牛顿第二定律与静力学、运动学的综合问题,物体平衡条件等都是高考热点;对牛顿第一、第三定律的考查经常以选择题或融合到计算题中的形式呈现。

另外,牛顿运动定律在实际中的应用很多,如弹簧问题、传送带问题、传感器问题、超重失重问题、同步卫星问题等应用非常广泛,尤其要注意以天体问题为背景的信息给予题,这类试题不仅能考查考生对知识的掌握程度而且还能考查考生从材料、信息中获取有用信息的能力,因此备受命题专家的青睐。

二、命题趋势牛顿运动定律是解决力和运动关系问题的依据,是历年高考命题的热点。

总结近年高考的命题趋势,一是考力和运动的综合题,重点考查综合运用知识的能力,如为使物体变为某一运动状态,应选择怎样的施力方案;二是联系实际,以实际问题为背景命题,重点考查获取并处理信息,去粗取精,把实际问题转化成物理问题的能力。

三、例题精析【例1】一斜面AB长为5m,倾角为30°,一质量为2kg的小物体(大小不计)从斜面顶端A 点由静止释放,如图所示.斜面与物体间的动摩擦因数为63,求小物体下滑到斜面底端B 时的速度及所用时间.(g 取10 m/s 2)解析:以小物块为研究对象进行受力分析,如图所示.物块受重力mg 、斜面支持力N 、摩擦力f ,垂直斜面方向,由平衡条件得:mg cos30°=N 沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma 又f =μN由以上三式解得a =2.5m/s 2小物体下滑到斜面底端B 点时的速度:==as v B 25m/s运动时间:22==ast s 题后反思:以斜面上物体的运动为背景考查牛顿第二定律和运动学知识是常见的题型之一,熟练掌握斜面上物体的受力分析,正确求解加速度是解决问题的关键。

【例2】如图所示,固定在水平面上的斜面其倾角θ=37º,长方体木块A 的MN 面上钉着一颗小钉子,质量m =1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直.木块与斜面间的动摩擦因数μ=0.50.现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力大小.(取g =10m/s 2,sin37º=0.6,cos37º=0.8)解析:以木块和小球整体为研究对象,设木块的质量为M ,下滑的加速度为a ,沿斜面方向,根据牛顿第二定律有:(M +m )g sin37º-μ(M +m )g cos37º=(M +m )a 解得:a =g (sin37º-μcos37º)=2m/s 2以小球B 为研究对象,受重力mg ,细线拉力T 和MN 面对小球沿斜面向上的弹力F N ,沿斜面方向,根据牛顿第二定律有:mg sin37º-F N =ma解得:F N =mg sin37º-ma =6N .由牛顿第三定律得,小球对木块MN 面的压力大小为6N .题后反思:对于有共同加速度的连接体问题,一般先用整体法由牛顿第二定律求出加速度,再根据题目要求,将其中的某个物体进行隔离分析和求解.由整体法求解加速度时,F=ma ,要注意质量m 与研究对象对应.AθB MN【例3】一小圆盘静止在桌布上,位于一方桌的水平面的中央。

桌布的一边与桌的AB 边重合,如图。

已知盘与桌布间的动摩擦因数为μ1,盘与桌面间的动摩擦因数为μ2。

现突然以恒定加速度a 将桌布抽离桌面,加速度的方向是水平的且垂直于AB 边。

若圆盘最后未从桌面掉下,则加速度a 满足的条件是什么?(以g 表示重力加速度)解析:设圆盘的质量为m ,桌长为l ,在桌布从圆盘下抽出的过程中,盘的加速度为a 1,有11ma mg =μ ①桌布抽出后,盘在桌面上作匀减速运动,以a 2表示加速度的大小,有22ma mg =μ ②设盘刚离开桌布时的速度为v 1,移动的距离为x 1,离开桌布后在桌面上在运动距离x 2后便停下,有11212x a v = ③ 22212x a v = ④盘没有从桌面上掉下的条件是1221x l x -≤⑤ 设桌布从盘下抽出的时间为t ,在这段时间内桌布移动的距离为x ,有221at x =⑥ 21121t a x = ⑦而121x l x +=⑧ 由以上各式解得g a 12212μμμμ+≥⑨ 题后反思:本题涉及到圆盘和桌布两个物体的运动,而且圆盘的运动过程包括加速和减速两个过程,本题是一个综合性较强的动力学问题,难度较大。

画出研究对象的运动草图,抓住运动过程的特点分别应用牛顿第二定律和运动学公式即可求解。

【例4】如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L 1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L 2。

若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( )A .L 2<L 1B .L 2>L 1C .L 2=L 1D .由于A 、B 质量关系未知,故无法确定L 1、L 2的大小关系解析:利用整体法和隔离法,分别对AB 整体和物体B 分别由牛顿第二定律列式求解,即得C 选项正确。

本题容易错选A 或C ,草率地认为A 、B 置于粗糙水平面上时要受到摩擦力的作用,力F 的大小不变,因此L 2应该短一些,或认为由于A 、B 质量关系未知,故L 1、L 2的大小关系无法确定。

答案:C题后反思:本题涉及到胡克定律、滑动摩擦力、牛顿第二定律等。

从考查方法的角度看,本题重在考查考生对整体法和隔离法的应用,属于2级要求。

对胡克定律、摩擦力的考查在近年高考中屡屡出现,并可与其他知识相结合,变化灵活,体现对考生能力的考查。

【例5】质量为40kg 的雪撬在倾角θ=37°的斜面上向下滑动(如图甲所示),所受的空气阻力与速度成正比。

今测得雪撬运动的v-t 图像如图7乙所示,且AB 是曲线的切线,B 点坐标为(4,15),CD 是曲线的渐近线。

试求空气的阻力系数k 和雪撬与斜坡间的动摩擦因数μ。

解析: 由牛顿运动定律得:ma kv N mg =--μθsin 由平衡条件得:θcos mg N =由图象得:A 点,v A =5m/s ,加速度a A =2.5m/s 2; 最终雪橇匀速运动时最大速度v m =10m/s ,a =0 代入数据解得:μ=0.125 k=20N ·s/m解决本题的关键是,先对雪橇进行受力分析,画出正确的受力图,然后由正交分解法列出牛顿第二定律的方程。

从物理图像上分别读取初、末两个状态的速度和加速度值,代入方程组联立求解。

题后反思:本题以体育运动为素材,涉及匀变速直线运动的规律、牛顿运动定律、斜面上的受力分析、摩擦力、物理图象等多个知识点,综合性较强,考查学生分析、解决力和运动的关系问题。

B A乙甲以体育运动为背景的问题历来是高考命题的重点和热点,情景复杂多变,涉及的知识点较多,可以有效地考查学生的基础知识和综合能力。

【例6】如图所示,在光滑的桌面上叠放着一质量为m A =2.0kg 的薄木板A 和质量为m B =3 kg 的金属块B .A 的长度L =2.0m .B 上有轻线绕过定滑轮与质量为m C =1.0 kg 的物块C 相连.B 与A 之间的滑动摩擦因数 µ =0.10,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B 位于A 的左端(如图),然后放手,求经过多长时间t 后 B 从 A 的右端脱离(设 A 的右端距滑轮足够远)(取g =10m/s 2).解析: 以桌面为参考系,令a A 表示A 的加速度,a B 表示B 、C 的加速度,s A 和s B 分别表示 t 时间 A 和B 移动的距离,则由牛顿定律和匀加速运动的规律可得m C g-µm B g =(m C +m B )a B µ m B g =m A a As B =21a B t 2s A =21a A t 2s B -s A =L由以上各式,代入数值,可得t =4.0s题后反思: 本题属于多体运动问题,研究对象涉及到三个物体,考点涉及匀变速直线运动的规律、牛顿运动定律、受力分析、摩擦力等多个知识点,综合性较强,考查学生分析、解决力和运动的关系问题。

此类试题历来是高考命题的重点和热点,情景复杂多变,涉及的知识点较多,可以有效地考查学生的基础知识和综合能力。

解决本题的关键是,弄清A 、B 、C 三个物体的加速度,以及A 、B 间的位移关系。

B 、C 属于连接体,加速度大小相等;A 板长L 是联系A 、B 间位移关系的纽带。

【例7】如图所示,传送带与地面倾角θ=37°,从A 到B 长度为16m ,传送带以10m/s 的速度逆时针转动.在传送带上端A 处无初速度的放一个质量为0.5kg 的物体,它与传送带之间的摩擦因数为0.5.求物体从A 运动到B 所用时间是多少?(sin37°=0.6,cos37°=0.8)解析:物体放在传送带上后,开始的阶段,由于传送带的速度大于物体的速度,物体所受的摩擦力沿传送带向下如图15所示,物体由静止加速,由牛顿第二定律得mgsin θ+μmgcos θ=ma 1解得a 1=10m/s 2物体加速到与传送带速度相同需要的时间为t 1=11010v a =s=1s 物体加速到与传送带速度相同发生的位移为2211101522s at m m ==⨯⨯= 由于μ<tan θ(μ=0.5,tan θ=0.75),物体在重力作用下将继续加速运动,当物体的速度大于传送带的速度时,物体给传送带的摩擦力沿传送带向上.如图16所示,由牛顿第二定律得mgsin θ-μmgcos θ=ma 2 解得:a 2=2m/s设后一阶段物体滑至低端所用时间为t 2, 由L -s =vt 2+212at 解得t 2=1s (t 2=11s 舍去) 所以,物体从A 运动到B 所用时间t =t 1+t 2=2s题后反思:本题是倾斜放置的传送带问题,涉及到斜面上的受力分析、牛顿运动定律、运动过程分析等较多知识。

相关主题