快速成型技术的现状和发展趋势
1 快速成型技术的基本成型原理
近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。
尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。
传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。
而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。
它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。
目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。
其基本的原理如下图所示。
图1 快速成型原理示意图
2 快速成型技术在产品开发中的应用
不断提高RP技术的应用水平是推动RP技术发展的重要方面。
目前,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快
速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。
并且随着这一技术本身的发展,其应用领域将不断拓展。
RP技术的实际应用主要集中在以下几个方面:
2.1用于新产品的设计与试制。
(1)CAID应用: 工业设计师在短时间内得到精确的原型与业者作造形研讨。
(2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。
(3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。
(4)视觉效果:设计人員能在短时间之内便能看到设计的雛型,可作为进一步研发的基石。
(5)设计确认:可在短时间内即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。
(6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间内完成设计的最佳化。
(7)直接生产: 直接生产小型工具,或作为翻模工具
2.2 快速制模及快速铸造
快速模具制造传统的模具生产时间长,成本高。
将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。
快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具
2.3 机械制造
由于RP技术自身的特点,使得其在机械制造领域内,获得广泛的应用,多用于制造单件、小批量金属零件的制造。
有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。
2.4 医疗中的快速成形技术
在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。
以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。
2.5 三维复制
快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。
2.6 航空航天技术领域
航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,。