电机学难重点的MATLAB仿真实验报告铁磁材料磁化曲线的拟合一、实验内容及目的1.实验目的(1)了解磁化曲线的非线性和饱和特性。
(2)掌握采用MATLAB进行曲线拟合的方法。
2.基本知识在非铁磁材料中,磁通密度B和磁场强度H之间是线性关系,其系数就是空气的磁导率。
而在铁磁材料中,二者是非线性关系,称为磁化曲线。
一段典型的磁化曲线如图1所示。
一般的,磁化曲线都有开始阶段,线性增长阶段,拐弯阶段和饱和阶段四部分,其中线性增长阶段和拐弯阶段的交界点就是曲线的膝点。
图1 变压器磁化曲线由于表征磁化曲线是用磁通密度B和磁场强度H两维数组表示的,是不连续的,而且其变化特征也比较复杂。
当数据量很大的时候采用这种数组形式很不方便,也占用存储量,最好的处理方式,是采用曲线拟合方法,把磁化曲线表示成显函数形式的解析表达式。
二、实验要求及要点描述(1)采用屏幕图形方式直观显示磁化曲线。
(2)利用编程方法和MATLAB的拟合函数。
(3)根据所提供的数据,合理选取全部和部分数据绘制磁化曲线,并进行比较,不少于4条曲线。
(4)绘制每条磁化曲线对应的图和表。
(5)在一个图中显示全部曲线,并进行区分。
三、基本知识及实验方法描述(1)利用编程方法和MATLAB的拟合函数进行曲线拟合。
(2)由于磁感应强度B与电动势E之间是呈线性关系的,而磁场强度H和电流I之间也是呈线性关系的,所以在绘制磁化曲线时可以用E-I曲线来表示B-H 曲线,作为磁化曲线。
(3)实验中利用多项式函数来进行曲线的拟合,在MATLAB中的拟合函数为p=polyfit(H1,B1,n); poly2str(p,'x'); z=polyval(p,H1);,分别选择全部数据或者部分数据进行拟合,先将数据选择好,然后再确定用几次多项式进行拟合,分别在一个图中显示四组数据拟合的曲线,更换拟合函数的多项式次数在进行实验,然后分析实验结果。
四、实验源程序四张表的数据都进行13次拟合>> H1=[1.40 1.431.461.491.521.551.581.611.641.67...1.711.751.791.831.871.911.951.992.032.07...2.122.172.222.272.322.372.422.482.542.60...2.672.742.812.882.953.023.093.163.243.32...3.403.483.563.643.723.803.893.984.074.16...4.254.354.454.554.654.764.885.005.125.24...5.365.495.625.755.886.026.166.306.456.60...6.756.917.087.267.457.657.868.088.318.55...8.809.069.339.619.9010.210.510.911.211.6...12.012.513.013.514.014.515.015.616.216.8...17.418.218.919.820.621.622.623.825.026.4...28.029.731.533.736.038.541.344.047.050.0...52.955.959.062.165.369.272.876.680.484.2...88.092.095.6100.0105.0110.0115.0120.0126.0132.0...138.0145.0152.0166.0173.0181.0189.0197.0205.0];>> B1=0.4:0.01:1.89a=polyfit(h1,b1,13)for n=1:151hf1(n)=173*(n-1)/150bf1(n)=a(1)*hf1(n)^13+a(2)*hf1(n)^12+a(3)*hf1(n)^11+a(4)*hf1(n)^10+a(5)*hf1(n)^9+a(6)*hf1(n )^8+a(7)*hf1(n)^7+a(8)*hf1(n)^6+a(9)*hf1(n)^5+a(10)*hf1(n)^4+a(11)*hf1(n)^3++a(12)*hf1(n)^ 2+a(13)*hf1(n)^1+a(14)endplot(hf1,bf1,'k')hold on %选取全部数据绘制D21磁化曲线xlabel('H(A/cm)') %标注x,y轴ylabel('B(T)')h2=[0.700.720.730.750.760.780.800.810.830.84 0.860.880.890.910.920.940.960.970.991.00 1.021.041.061.071.091.111.131.151.161.18 1.201.221.241.251.271.291.311.331.341.36 1.381.401.421.441.461.481.501.531.551.57 1.601.631.651.681.711.741.771.801.831.87 1.901.941.982.022.062.112.162.222.272.33 2.402.472.542.622.702.792.882.973.063.16 3.263.373.483.593.713.833.974.114.264.41 4.564.734.915.105.305.515.735.966.216.46 6.737.017.317.627.948.278.628.999.379.76 10.1710.6011.0411.4911.9612.4512.9513.4613.9914.54 15.1015.6816.2816.9017.5418.2018.9019.6620.4721.34 22.2623.2624.3825.6227.0028.5330.1331.7533.4035.07 36.8038.6040.4042.2044.0045.8047.7049.6051.5053.40]b2=0.4:0.01:1.89a=polyfit(h2,b2,13)for n=1:151hf2(n)=53.4*(n-1)/150bf2(n)=a(1)*hf2(n)^13+a(2)*hf2(n)^12+a(3)*hf2(n)^11+a(4)*hf2(n)^10+a(5)*hf2(n)^9+a(6)*hf2(n )^8+a(7)*hf2(n)^7+a(8)*hf2(n)^6+a(9)*hf2(n)^5+a(10)*hf2(n)^4+a(11)*hf2(n)^3++a(12)*hf2(n)^ 2+a(13)*hf2(n)^1+a(14)endplot(hf2,bf2,'g')hold on %选取全部数据绘制D22磁化曲线>> h3=[1.38 1.401.421.441.461.481.5 1.521.541.56 1.581.601.621.641.661.691.711.741.6 1.78 1.811.821.831.891.911.941.972.002.032.06 2.102.132.162.202.242.282.322.3624 2.45 2.502.552.602.652.7 1.762.812.872.932.993.063.133.196.63.333.413.493.573.653.74 3.833.924.014.114.224.334.444.564.674.8 4.935.075.215.365.525.685.846.006.166.33 6.526.726.947.167.387.627.868.108.368.62 8.909.209.509.8010.110.510.911.3611.712.1 12.613.113.614.214.815.516.317.118.119.1 20.121.222.423.725.026.728.530.432.635.1 37.840.743.746.850.053.456.860.464.067.8 72.076.480.885.490.295.0100105110116 122128134140146152158165172180]b3=0.4:0.01:1.89len3=length(h3)hmax3=h3(len3)a=polyfit(h3,b3,13)for n=1:151hf3(n)=180*(n-1)/150bf3(n)=a(1)*hf3(n)^13+a(2)*hf3(n)^12+a(3)*hf3(n)^11+a(4)*hf3(n)^10+a(5)*hf3(n)^9+a(6)*hf3(n )^8+a(7)*hf3(n)^7+a(8)*hf3(n)^6+a(9)*hf3(n)^5+a(10)*hf3(n)^4+a(11)*hf3(n)^3++a(12)*hf3(n)^ 2+a(13)*hf3(n)^1+a(14)endplot(hf3,bf3,'m')hold on %选取全部数据绘制D23磁化曲线h4=[1.371.381.4 1.421.441.461.481.501.521.54 1.561.581.6 1.621.641.661.681.701.721.75 1.771.791.811.841.871.891.921.941.972.00 2.032.062.092.122.162.202.232.272.312.35 2.392.432.482.522.572.622.672.732.792.85 2.912.973.033.13.173.243.313.393.473.55 3.633.713.793.883.974.064.164.264.374.48 4.604.724.865.005.145.295.445.605.765.926.106.286.466.656.857.57.257.467.687.905.148.408.388.969.269.589.8610.210.611.0 11.411.812.612.813.313.814.415.015.716.4 17.218.018.919.920.922.123.525.026.828.6 30.733.035.638.241.144.047.050.053.557.5 61.566.070.57579.784.589.594.7100105 110116122128134141148155162170]b4=0.4:0.01:1.89a=polyfit(h4,b4,13)for n=1:151hf4(n)=170*(n-1)/150bf4(n)=a(1)*hf4(n)^13+a(2)*hf4(n)^12+a(3)*hf4(n)^11+a(4)*hf4(n)^10+a(5)*hf4(n)^9+a(6)*hf4(n )^8+a(7)*hf4(n)^7+a(8)*hf4(n)^6+a(9)*hf4(n)^5+a(10)*hf4(n)^4+a(11)*hf4(n)^3++a(12)*hf4(n)^ 2+a(13)*hf4(n)^1+a(14)endplot(hf4,bf4,'b') %选取全部数据绘制D24磁化曲线五、实验结果(1)硅钢片D21磁化曲线图和表(2)硅钢片D22磁化曲线图和表(3)硅钢片D23磁化曲线图和表(4)硅钢片D24磁化曲线图和表(5)四条磁化曲线在一个表中3、实验结果的分析从拟合的磁化曲线我们可以看出,当磁场强度比较小时,磁通密度与磁场强度基本呈线性关系,也称为起始阶段和线性增长阶段,随着H的逐渐增大,磁通密度趋向于饱和,当H增加到很大时,磁通密度基本保持不变,即进入了饱和阶段,可见,实验结果与理论分析基本一致。