当前位置:文档之家› 液力变矩器故障和工作原理

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理
4.1.1液力变矩器构造
1、三元一级双相型液力变矩器
三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。

一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。

双相是指液力变矩器的工作状态分为变矩区和偶合区。

*
图4-1为液力变矩器三个主要元件的零件图。

2、液力变矩器的结构和作用
泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。

变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。

发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的
主动元件。

*
1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体
6-曲轮7-驱动端盖8-单向离合器9-涡轮
涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。

在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。

它是液力变矩器的输出元件。

涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。

它将液体的动能转变为机械能。

导轮的直径大约是泵轮或涡轮直径的一半。

并位于两者之间。

导轮是变矩器中的反作用力元件,用来改变液体流动的方向。

导轮叶片的外缘一般形成三段式油液导流环内缘。

分段导流环可以引导油液平稳的自由流动,避免出现紊流。

导轮支承在与花键和导轮轴连接的单向离合器上。

单向离合器使导轮只能与泵轮同向转动。

涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。

*
图4-3为液力变矩器油液流动示意图。

观看液力变矩器油液流动
图上通过箭头示意液体流动方向。

油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰
好和泵轮的旋转方向一致。

*
3、液力变矩器的锁止和减振
液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。

其余的动力都被转化为热量,散发到油液里。

为提高偶合工况的传动效率,变矩器设置了锁止离合器。

液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。

而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。

可以避免液力传动过程中不可避免的动力损失,提高液力变
矩器的工作效率。

液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离
心力锁止和粘液离合器锁止三种形式。

(1)液力锁止离合器
液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器
锁止形式。

液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。

液力锁止离合器进入锁止工况的示意图,见图4-4。

进入锁止工况时,变矩器内工作油液压加大,油液将压盘用力推向变矩器的后壳体,在油压和摩擦环摩擦力矩的双重作用下,压盘开始和变矩器同步旋转。

而压盘外端的卡口和涡轮上的卡口是相互咬合的,于是涡轮在压盘的带动下,也开始随变矩器壳同步旋转。

涡轮由液力传动改为机械传动,而变矩器完全进入锁止工
况。

*。

相关主题