当前位置:
文档之家› 第一章1.3 材料的断裂和机械强度.
第一章1.3 材料的断裂和机械强度.
金属材料还包括共晶组织、马氏体组织等。
1. 晶粒尺寸的影响 晶界的化学键合比晶粒内部弱,晶粒的断裂能要明显 高于晶界,而且晶界是杂质和缺陷的存在和富集之处,所 以多晶材料多沿晶界断裂。晶粒越细,则断裂表面积越大, 断裂能越高。断裂强度与晶粒尺寸d-1/2成正比关系。 2. 气孔的影响 材料的强度一般随着气孔率的提高而下降,这是由于 气孔的存在不但使材料的实际受力面积减小,而且还会在 周围引起应力集中。同样的气孔率,气孔尺寸越不均一, 分布越不均匀、形状越尖锐,对强度的影响就越大。
Y
断裂韧性KIC和断裂判据
裂纹尖端附近各点的应力随着KI值的增大而提 高, 当KI值随外力增大至临界值时,裂纹就 会快速扩展而导致构件断裂。这一临界状态所 对应的应力强度因子KIC称为临界应力强度因 子,单位为Pa﹒m1/2
K C Y f c
式中临界应力 f
材料的断裂强度。
Griffith 判据
GIC
c c2
E
K C Y f c
Y
K IC GIC E 2 E f
KIC与材料的本征参数E和γ等物理量有直接的 关系,反映了材料抵抗裂纹扩展的能力。
断裂韧性的测试
预制人工裂纹,对试样加载使之破坏
加载速率过低,裂纹可能会在在KI<KIC的 条件下发生亚临界裂纹扩展,使测试结果 偏低;但加载速率过高,使测量结果偏高。
1.3.2 Griffith断裂理论和断裂强度
1921年,Griffith提出裂纹理论解释这一现象,认为裂纹 引起的应力集中导致的裂纹扩展使材料断裂(而不是两个 理论晶面的分离),因此材料的强度低于理论值。 根据热力学和经典力学中的能量守恒定律,分析含裂纹 的固体在应力作用下自由能的变化,首次证明了脆性材料 的实际强度显著低于理论值的原因。
洛氏硬度也是一种压入硬度试验方法,以测量 压痕深度值的大小来表示材料的硬度值,以HR来表 示。试验的压头为圆锥角等于120度的金刚石圆锥 或直径为1.588mm或3.175mm的淬火钢球。用压痕凹 陷深度t来表征材料的硬度,材料越软,t越大。
(2)材料制备和使用过程中形成的裂纹
夹杂物与基体热膨胀系数不一致产生热应力导致微裂纹 第二相相变发生体积和形状的改变导致微裂纹 热膨胀系数和弹性模量显著各向异性,当温度或应力改变时在晶 界处产生内应力,导致微裂纹 基体内部致密度相差较大,在烧结过程中收缩不均导致微裂纹
(3)材料表面由机械损伤和化学腐蚀形成的表面 裂纹
2 裂纹扩展的基本方式
3. 裂纹尖端区域的应力场与应力场强度因子
一均匀受力的无限大平板含有 长度为2c的I型裂纹,在其尖 端(r, θ)处的应力分量为:
上式写成一般通式为:
可以得到
2 r
K
1/2
fij ( )
K c Y c
KI反映了裂纹尖端应力场的强度,称为应力场强度因子, 单位为Pa﹒m1/2,但是由于各种裂纹的具体情况有差别, 表达式不同。Y称为几何形状因子,其值随裂纹的形态、 试样形状与加载方式的不同而异,一般情况Y的值介于 1~2之间,无量纲。 对于无限大平板含中心穿透裂纹,
1.3 材料的断裂与机械强度
延性断裂和脆性断裂
高度延性的 软质材料, 断裂前严重 颈缩(塑性 形变),最 后发生点断 裂; 脆性材料, 断裂前没有 颈缩,断口 平坦。
1.3.1 理论断裂强度
可见固体的理论断裂强度取决于材料的 弹性模量、表面能和晶格常数。面间距越 小,弹性模量和表面能越大,固体材料的 理论断裂强度就越高。 实测的断裂强度只有理论值的百分之一, 只有极细的纤维和晶须的强度比较接近理 论强度值。主要是由于固体材料内部的缺 陷所致。
1.3.4 断裂力学与材料的断裂韧性
用断裂力学建立起的断裂判据,能真正用于设计上,它能告 诉我们,在给定裂纹尺寸和形状时,究竟允许多大的工作应力才 不致发生脆断;反之,当工作应力确定后,可根据断裂判据确定 构件内部在不发生断裂的前提下所允许的最大裂纹尺寸。
1 裂纹的形成
(1)位错导致裂纹核形成
当位错运动遇到障碍(如晶界、 第二相等)或者遇到由位错反应 形成的不动位错而产生赛积,引 起 局部应力集中,达到理论断 裂强度时,就会导致局部的开裂 而形成解理裂纹。
同样的材料,大试样的强度低于小试样
?
要使材料具有高的断裂强度,就要求材料的弹性模量和 断裂表面能打,而裂纹尺寸小。
1.3.3 材料的显微结构与强度的关系
材料的显微结构包括多晶材料中晶界的特征及多 晶中晶粒的大小、形状和取向。 陶瓷材料和高分子材料还包括晶向及非晶相的分 布;气孔的尺寸、数量与位置,各种杂质、添加 物、缺陷、微裂纹的存在形式及分布;
强度的测试
拉伸强度、弯曲强度、压缩强度和扭转强度,针对 不同的材料选择不同的测试方法,注意试样的大小会影 响测试结果。
断裂强度的统计性质
材料的断裂起源于内部存在的最危险裂纹。因此材 料的强度值与平均值之间存在较大的偏差。Weibull提 出经验分布的方法,是一种“最弱环”方法,认为物体 的强度与一系列独立体积单元的幸存概率有关。类似于 一根链条取决于最弱的环节,链条断裂后,链条剩余部 分的强度又由该部分的最弱环节决定,而且剩余部分的 强度比断裂前链条的强度高,以此类推。
布氏硬度和洛氏硬度试验---金属材料。 布氏硬度的测定原理是用一定大小的载荷F(kgf),把直径 为D(mm)的淬火钢球或硬质合金球压入试样表面,保持规定时 间后卸除载荷,测量试样表面的残留压痕直径d,求压痕的表面 积S。将单位压痕面积承受的平均压力(F/S)定义为布氏硬度, 其符号用HB表示。
布氏硬度试验的优点是压痕面积较大,能反映材料在较大区域 内各组成相的综合平均性能,数据稳定,重复性高。缺点是压痕 直径较大,一般不宜在成品件上直接进行试验,不适合薄件和表 面层硬度的测试,对于测量硬度高的材料,钢球本身会产生变形。
1.3.5 材料的硬度
硬度反映材料表面局部抵抗塑性形变的能 力,主要取决于材料的组成和结构,原子间 的结合能越大,硬度就越高。
(1)莫氏硬度 莫氏硬度是划痕硬度,表示的是硬度相 对大 金刚石为10.
(2) 布氏硬度和洛氏硬度硬度测 试.rmvb