当前位置:文档之家› 中频电炉技术说明书

中频电炉技术说明书

可控硅串联逆变中频电炉技术说明书高效节电大功率可控硅串联逆变中频电炉引言90年代我国工业飞速发展,大容量、高功率,低能耗的中频电炉越来越被人们所关注,尤其在铸造领域中,中频电炉能提供高质量的铁水和钢水,便于在熔化过程中控制温度和化学成份,因此近年大量引进国外制造的大容量可控硅中频电炉,已达数百台之多,几乎国内上规模的机械制造厂、机床厂、汽车制造厂的高端技术市场都被国外厂商占有,,目前国内产品比较国外,在控制技术上,按装工艺上仍有相当差距。

铸造厂的传统熔化设备冲天炉,出铁温度低,铁水在炉中增碳较多,不易生产出高质量铸铁件,且冲天炉严重污染环境,在城市区域内不容许存在,目前国内铸造用焦价格猛涨,与中频电炉熔化成本相当。

因此大容量中频电炉是铸造厂节能、高效、清洁环保型熔化设备,所以我们研制,开发大熔量高功率的中频电炉起点高,技术指标以国外最先进的电炉为目标。

串联逆变中频电源具有功率因素高,我公司生产的中频电源功率因素不低于0.98.高效节能,谐波小。

一、元器件的选择目前已经研制成功的具有一拖二功能的可控硅中频熔化炉,是高效节电最佳的熔化设备。

我国电器工业经过多年的发展,目前按装大容量中频电炉元器件己具备相当条件,大电流耐高压可控硅,高压电热电容己能生产,满足需求。

中频逆变电源的开关元件,目前有二种,可控硅SCR和绝缘栅双极型场效应晶体管IGBT,根据国外文献所载,大功率,较低频率(<1 000Hz)的逆变电源,选用可控硅的关闭时间要求较低,TOT可以在5 0~60微秒级,这样硅片的厚度可以厚些,可控硅的耐压便可以提高,且可控硅的价格比IGBT低得多,.而且工作稳定性和可靠性比IGBT高,我们设计的逆变器选用 KK2500A/2 5 00V可控硅。

目前世界上技术最先进、规模最大的美国应达电炉公司仍采用大功率可控硅组装。

图1依据功率和频率选择逆变开关元件IGBT特别适用于频率高,功率较小的变频加热设备,如小容量中频真空熔炼炉,工件表面淬火和小件透热等。

目前国内200A以上的IGBT都需依赖进口,还受到出口国的限制,最大容量为500A/1 5 0 0V。

组装大功率电源时,不得不把I GBT串联后再多组并联,对用户来说,元件损坏时就得长期依赖于设备制造厂商供应备件,根据图1我们选用国产大功率可控硅是合理的。

二、串并电路的比较串并联逆变中频电源相比具有以下优点1、可控硅并联线路是并联谐振电路,在熔炼过程中,尤其对熔炼铝、铜等材料,负载很轻,它的功率输出很小,与负载的性质有很大关系,所以其熔化速度慢、升温困难。

而可控硅串联中频熔炼炉是通过调频方式调节功率,所以受负载性质的影响相对小,熔炼全过程近乎保持恒功率输出,由于是串联谐振,也就是电压谐振,感应圈电压高,电流小,所以电能损失就小。

2、由于是串联逆变,功率因素高,谐波小,不需要再上无功补尝装置。

这样可以为用户节省不小的一笔开支,也是供电部门大力提倡推广的先进设备。

3、串联逆变电源工作时,整流始终在全导通状态下工作,改变逆变回路输出功率是靠控制逆变触发脉冲频率来实现。

且负载电流为正弦波,所以串联逆变电源不会有高次谐波严重污染电网,且功率因数高。

而并联逆变不可能实现一拖二自动调功运行,因为并联逆变电源调功只能靠调节整流桥输出电压来实现,当并联逆变整流桥工作在低电压,整流导通角很小状态下,设备的功率因数将会很低,且并联逆变负载电流为方波,将会严重污染电网。

如果靠调节逆变反压角来调功,调功范围是很窄的,因此并联逆变电源是无法实现一拖二运行的。

国内外中频感应电炉主要有二种类型,并联逆变和串联逆变二类,过去由于我国不能生产高压谐振电热电容和大功率高压可控硅,所以普遍生产并联谐振型中频炉,现在由于近二年元器件在技术上已有所突破,所以一些电炉制厂商都竞相争雄开发串联型中频电炉。

并联逆变是电流型谐振(a)振荡回路中的电流I是电源供给电流i的Q倍Q为回路品质因素,通常可达6以上,因此电流I在谐振回路内很大,负载线圈L,电容C,以及铜排内发热损耗很大。

串联逆变是电压型谐振(b),回路中的电流与电源供给的电流相等,而在电容C和负载线圈上的振荡电压为电源电压的Q倍,可高达2 5 00V AC以上。

由于谐振回路电流I等于通过可控硅的电源电流i。

所以串联逆变较并联逆变回路中的电能损耗要小得多,因此串联逆变电炉电效率大大高于并联逆变电路。

图2 串并联谐振电路三,一拖二工作原理运行方式采用一拖二,一拖二即一套整流电源带动二套逆变装置运行,也可以任何一套逆变装置单独运行,供电给A炉或B炉,双供电一拖二功能,特别适用于中小铸件大批量连续生产运行,任意一台电炉高功率熔化作业,另一台炉体可保温或将冷料预热,功率按需任意分配,二台电炉的使用功率总和恒定不变,即总功率P总=PA+PB两台电炉连续交替熔化和保温浇铸,同时运行,可使电源始终在满功率下运行,以此提高电炉的熔化生产率,图3为一拖二方块图。

图3 一拖二电路方块示意图串联逆变电源工作时,整流始终在全导通情况下工作,改变逆变回路输出功率是靠控制逆变触发脉冲频率来实现。

且负载电流为正弦波,所以串联逆变电源不会有高次谐波严重污染电网,且功率因数高。

而并联逆变不可能实现一拖二自动调功运行,因为并联逆变电源调功只能靠调节整流桥输出电压来实现,当并联逆变整流桥工作在低电压,整流导通角很小状态下,设备的功率因数将会很低,且并联逆变负载电流为方波,将会严重污染电网。

如果靠调节逆变反压角来调功,调功范围是很窄的,因此并联逆变电源是无法实现一拖二运行的。

四、串联逆变电源工作原理串联逆变电源为电压源供电,串联逆变电源主回路原理图如图4所示。

图4串联逆变电源原理图电源由三相桥式整流桥和可控硅半桥逆变电路组成,运行时整流桥可控硅全导通,满电压工作。

逆变器主电路由二组可控硅桥臂和二组谐振电容器及电炉线圈组成,半桥逆变电路适用于大功率低频率恒压源逆变器。

逆变桥臂上两个SCR交替导通,任何一只SCR导通一定要在串联负载电流过零之后,即大于SCR关闭时间TOT之后,触发导通,如图5,6所示逆变器负载波形图,当SCR电流过零后,与其并联的反向二极管导通,其反向压降把SCR关闭,之后另一臂SCR才能触发导通,逆变器的输出工作频率为300—400Hz,工作频率越高,输出功率越大。

图5为逆变器触发脉冲和负载波形图,把可控硅视为理想开关,瞬时导通和关断,电感L和电阻R串联,等效于炉体的负载,触发脉冲频率略低于负载谐振频率f。

图5 逆变波形半桥逆变器工作电流流动路经的描述图6为简化的逆变器电路图,逆变运行时,电流通过逆变器和炉体线圈L的路径,逆变器的工作波形如图7所示,逆变工作前恒定直流电压Ud为电容C1、C2均分,各充电至1/2Ud,均为上正下负电压,当t=to时SCRl被触发导通,电容C1电荷通过SCRl-Lf-Rf -C1下端放电,另一路是使C2充电,+Ud由CF上端-SCRl-Lf-Rf-C2-CF下端,这二路都是同一谐振电路的一部份,由于C1=C2,因而两路的工作频率相同,等于C=C1+C2,Lf-Rf组成的谐振频率。

当t=t1时C1放电结束,C1电压为零,C2上电压必定充电到Ud,因为CF两端电压恒定,其值等于C1和C2电压之和,此时流过负载线圈的电流为最大,I=I1+I2,由于在炉体线圈中储蓄的磁场能量作用下,继续维持上述两路电流流动,使电容C1反向充电,下正上负,而C2则从Ud值继续升高,直到t=t2时,磁场能量降至零,线圈Lf电流I=0,这时C1上反压和C2上正向电压都达到最大值,到此流过炉体线圈的电流为半个正弦波周期。

图6 逆变器电流流向图图7 半桥逆变器工作波形接着住C1,C2电容电压的作用下,形成两路和前述两路路径基本相同,只是DI代替SCRl通过电流,而电流方向与前完全相反,此电流仍按正弦波规律变化,直到t=t4时,C1正向充电到1/2Ud,C2电压也恢复到1/2Ud,炉体线圈电流又降至零,至此通过炉体负载的电流完成一个正弦波周期,当放电电流通过二极管D1时,其反向压降使SCRl关断,如果在大于可控硅SCRl TOT关断时间,及时将SCR2触发导通,电流14通过C1-Rf-Lf-SCR2-CF下端,对C1充电,炉体线圈从电源吸取的电能,其电流与放电电流方向一致,触发SCRl的时间越接近TOT ,炉体线圈输出的功率就越大,如果SCR2一直不能通,上述放电电流将形 成炉体感应器电流的负半周,当电流到达零时,C1和C2上的电压将相等,等于1/2Ud 。

负载在SCRl 或SCR2导通期间,从电源获取电能,在D1,D2导通期间,电容中的电能又反馈到电源,显然D1是在SCRl 电流过零到SCR2导通期间导通。

D1导通时间一定要大于SCRl 的关断时间TOT ,SCR2导通后,SCR2便接过D1中的电流,使D1自行关断,D2的工作过程与D1相同,只不过用来使SCR2关断。

图8为逆变运行时,示波实器测波形(a)负载电压波形 (b)谐振电容波形 (c)逆变桥SCR 电压波形图8 示波器测试的实际波形谐振回路的自然谐振频率f0在运行中不是固定不变的,电感L 和等效电阻R随着温度和炉料的多少而不断变化,对一定容量的炉体是在一定范围内变化。

F 0=〉〈-f f f L R L c 2121π2Lf 炉体电感Rf 炉料等效电阻C 谐振电容C1+C2电压源串联逆变器的触发脉冲频率始终低于负载谐振频率,当触发脉冲频率接近谐振频率时,负载阻抗降低,输出功率增加。

当触发脉冲频率越低于负载谐振频率时,负载阻抗增大,输出功率便减小。

如图9所描绘的频率对功率的变化曲线,因此电炉始终在低于谐振频率下工作。

图9频率与输出功率的关系为了减少中频熔化电源工作时对电网产生的谐波干扰,我公司生产的500kw以上的中频电源采用12脉冲可控硅桥式整流线路。

中频熔化电源的整流变压器采用了D/Y-11,d0接线形式,变压器的二次有二组三相输出,这二组输出的线电压相等,都是380V,但是相位相差30 。

二组输出分别接I和II 组整流桥。

理论分析表明,通常的三相6脉冲可控硅桥式整流线路在工作时会对电网产生5次,7次,11次,13次和更高次的谐波干扰电流,这些谐波电流的大小分别变压器一次电流6脉冲整流谐波分析变压器一次电流是工频基波电流的1/5,1/7,1/11和1/13。

当中频熔化电源的输出功率比较大时,如果采用三相6脉冲可控硅桥式整流线路,它们工作时产生的谐波干扰有可能造成当地电网谐波超标(取决于当地电网的短路容量),或导致某些精密设备和仪器不能正常工作。

采用六相12脉冲可控硅桥式整流线路后,由于变压器的特殊接线方法,5次,7次谐波电流将在变压器内部相互抵消,从而使对电网的谐波干扰大幅度降低。

相关主题