第二章习题答案1. 若y y x x m m →→且,则(,)(,)m m x y x y ρρ→. 特别的, 若x x m →, 则(,)(,).m x y x y ρρ→证明:这实际上是表明(,)x y ρ是n n R R ⨯上的连续函数. 利用三角不等式, 得到(,)(,)(,)(,)(,)(,)(,)(,)0,)m m m m m m m m x y x y x y x y x y x y x x y y m ρρρρρρρρ-≤-+-≤+→→∞(.2. 证明:若()δ,01x O x ∈,则δδ<∃1,使得()()δδ,,011x O x O ⊂.证明:实际上取),(0101x x ρδδ-<<即可,因为此时对任意的()11,δx O x ∈,有δρδρρρ<+≤+≤),(),(),(),(0110110x x x x x x x x ,即()0,x O x δ∈.3. 证明以下三条等价:(1).0x E ∈; (2). 0x 的任意邻域中都有E 中的点;(3). 存在E 中的点列{}n x 收敛到0x . 进而,若0x E ∉,则存在0δ>,使得0(,)O x E δ=∅I .证明:注意到'E E E =U . (i ).若(1)成立,则0x E ∈或0'x E ∈. 若前者成立,显然(2)成立;若后者0'x E ∈成立,由极限点的定义也有(2)成立. 总之,由(1)推出(2). (ii). 若(2)成立,则对任意的n ,有10(,)n O x E ≠∅I ,在其中任选一点记为n x . 这样就得到点列{}n x E ⊂,使得10(,)n n x x ρ<,即(3)成立.(iii). 设(3)成立. 若存在某个n 使得0n x x =,当然有0n x x E E =∈⊂;若对任意的n ,都有0n x x ≠,则根据极限点的性质知0'x E E ∈⊂. 总之,(1)成立. 5. 证明:A B A B ⋃=⋃.证明:因为()'''A B A B =U U ,所以有()()()()()()'''''A B A B A B A B A B A A B B A B ⋃=⋃⋃=⋃⋃=⋃⋃=⋃U U U .6. 在1R 中,设[0,1]E Q =⋂,求',E E . 解: '[0,1]E E ==7. 在2R 中,设{}22(,):1E x y x y =+<,求',E E . 解: {}22'(,):1E E x y x y ==+≤8. 在2R 中,设E 是函数1sin ,0,0,0,x x y x ≠⎧=⎨=⎩的图形上的点的全体所成之集,求'E . 解: {}'(0,):11E E a a =-≤≤U . 因对任意的11a -≤≤,有E 上的点列11,()(0,)2arcsin 2arcsin y a n an a ππ⎧⎫→⎨⎬++⎩⎭. 9. 证明:当E 是不可数集时,'E 也必是不可数集.证明:注意到()()''\E E E E E =I U . 而'\E E 是E 中孤立点的全体,它是一个孤立集,故是至多可数集. 若'E 不是不可数集,则'E 是至多可数集,其子集'E E I 也必为至多可数集,就得到()()''\E E E E E =I U 也是至多可数集(因右边两个都是至多可数集),与题设矛盾. 所以'E 必是不可数集.10. 设1,inf ,sup ,E R E E υμ⊂== 证明,E E υμ∈∈.证明:由确界的定义知有E 中的点列{}n x 收敛到υ,再由第3题即得结果. 11. 证明以下三个命题等价: (1) E 是疏朗集. (2) E 不含任何邻域.(3) cE )(是稠密集.证明: (1)→(2):反证法 假设存在E r x O ⊂),(, 按闭包的等价定义, ),(r x O 中任意点的任意邻域中都含有E 中的点, 与疏朗集的定义矛盾.(2)→(3):由假设, 对x ∀, 0δ∀>, 有E x O ⊄),(δ, 从而()∅≠cE x O I ),(δ,即任一点的任一邻域中都有cE )(中的点,也即cE )(是稠密集.(3)→(1):反证法 若E 不是疏朗集,则存在),(δx O ,使得),(δx O 中没有子邻域与E 不相交. 这实际上意味着对任意的),(),(δx O r y O ⊂都有∅≠⋂E r y O ),(, 由r 的任意小性知道E y ∈, 再由y 的任意性知道E r y O ⊂),(, 由此知道()cE 不是稠密的.由这个命题知道疏朗集的余集是稠密的, 但稠密集的余集不一定是疏朗的, 如Q .12. 设n R E ⊂,证明:E 是疏朗集的充要条件是任一闭区间中均有子闭区间与E 不相交. 证明:因为任一闭区间中必含开区间,而任一开区间中也必含闭区间. 13. 证明:疏朗集的余集必是稠密集,但稠密集的余集未必是疏朗集.证明:由第11题知若E 是疏朗集,则cE )(是稠密集. 而由于E E ⊂,故()cc E E ⊂,从而由cE )(是稠密集得到c E 是稠密的. 反例:Q 和cQ 都是稠密集. 14. 构造反例说明:非稠密集未必是疏朗集,非疏朗集未必是稠密集.反例:]1,0[15. 证明:1R 中的非空闭区间不能表示成可数个疏朗集的并. 证明:反证法. 若否,设Y∞==1],[n n E b a ,其中{}n E 都是疏朗集. 利用12题,因1E 疏朗,故],[b a 中有非空子闭区间],[],[11b a b a ⊂,使111<-a b 且111[,]a b E =∅I ;同样,因2E 疏朗,存在],[],[1122b a b a ⊂,使2122<-a b 并且222[,]a b E =∅I ;一直下去,得到一列闭区间套{}],[n n b a ,使得na b n n 1<-,],[],[11n n n n b a b a ⊂++,且[,]n n n a b E =∅I . 由数学分析中的闭区间套定理,存在唯一的],[b a x ∈含于所有的闭区间{}],[n n b a ,并且成立)(n E x n ∀∉,这与Y∞==∈1],[n n E b a x 矛盾.16. 孤立集nR E ⊂必是至多可数集.证明:令(0,)k E E O k =I ,则{}k E 是有界集列,且1k k E E ∞==U,故只需要证明每个k E 是至多可数集即可. 注意到k E 也是孤立集并且有界,方便起见,不妨仍记k E 为E .这样,问题转为证明:有界的孤立集E 是至多可数集. 任取x E ∈,由孤立性,存在()0x δ>使得{}(,())O x x E x δ=I .(*)得到满足(*)式开球族{}(,()):O x x x E K δ∈=. 明显的,E 和开球族K 对等. 对K 中的球按半径分类.令n K 是K 中半径大于1n的球的全体. 则1n n K K ∞==U ,若能证明每个n K 都是有限集,就得到K 是至多可数集,从而E 是至多可数集.下证明:n K 都是有限集. 注意到n K 中每个球的半径大于1n,且每个球的球心不在其他的球中(由(*)式),这表明各个球心之间的距离大于1n. 另一方面,这些球心是一致有界的. 再结合有界的无限集必有收敛的子列这一命题,知n K 中只能有有限个球. 17. 设n R E ⊂,证明E 是n R 中包含E 的最小闭集.证明:当然,E 是包含E 的闭集. 任取闭集F ,且E F ⊂. 来证E F ⊂. 任取0x E ∈,则存在E 中的点列{}n x 收敛到0x (第3题中闭包的性质). 而E F ⊂,所以点列{}n x 含于F 中且收敛到0x ,这表明0x F ∈. 又F 是闭集,所以F F =,即有0x F ∈. 再由0x E ∈的任意性知E F ⊂,即E 是包含E 的最小闭集.18. 设)(x f 是n R 上的实值连续函数. 证明:对任意的实数a ,集合 {}:()x f x a >是开集, 集合{}a x f x ≥)(:是闭集.证明:(1)任取{}:()x f x a >中的点0x ,则0()f x a >. 由连续函数的性质(保号性)知:0δ∃>,使得当0x x δ-<时,恒有()f x a >,即{}0(,):()O x x f x a δ⊂>,也就证明了0x 是{}:()x f x a >的内点. 由0x 的任意性知{}:()x f x a >是开集. (2)证明{}:()E x f x a =≥是闭集.法一. 类似于(1),知{}:()x f x a <是开集. 由于开集的余集是闭集,所以{}{}:():()cx f x a x f x a ≥=<是闭集.法二. 直接证. 任取'0x E ∈,则存在点列{}n x E ⊂,使得0lim n n x x →∞=. 再由函数的连续性知0lim ()()n n f x f x →∞=. 又()()n f x a n ≥∀,结合连续函数的性质(保号性),必有0()f x a ≥,即0x E ∈. 由'0x E ∈的任意性得到'E E ⊂,也即E 是闭集.19. 证明:1R 中可数个稠密的开集之交是稠密集. 证明:反证法. 设1n n E E ∞==I,其中{}n E 是一列稠密的开集. 若E 不是稠密集,则存在某个邻域0(,)O x δ与E 不相交,这时必有闭区间0022[,]c I x x E δδ=-+⊂. (1)而()11ccc nn n n E E E ∞∞====IU , (2)这里{}c n E 是一列疏朗集(因为稠密开集的余集是疏朗的). {}c n E I I 也是一列疏朗集(疏朗集的子集当然是疏朗的),再由(1),(2)两式得到()11c c c n n n n I I E I E I E ∞∞=====I II U U ,这表明非空闭区间I 可以表示成一列疏朗集{}c n E I I 的并,与第15题矛盾.补:稠密开集E 的余集c E 是疏朗的.证明:反证法. 若c E 不是疏朗集,由疏朗集的等价条件(第11题)知存在邻域0(,)c O x E δ⊂. 又E 是开集,所以c E 是闭集,故c c E E =. 结合起来有0(,)c O x E δ⊂,这表明0(,)O x E δ=∅I ,与E 是稠密集矛盾. 20. 设)(x f 是1R 上的实函数. 令0()lim sup ()inf ().y x y x x f y f y δδδω→-<-<⎡⎤=-⎣⎦证明 :(1)对任意的0>ε,集合{}:()x x ωε≥是闭集.(2))(x f 的不连续点的全体成一σF 集.证明:注意到()''''''0,(,)()lim sup ()()y y O x x f y f y δδω→∈=-,它是)(x f 在x 处的振幅. (1). 等价于证明{}:()E x x ωε=<是开集. 任取0x E ∈,因为0()x ωε<,由极限的性质,存在0δ>,使得()'''0''',(,)sup ()()y y O x f y f y δε∈-<.任取0(,)x O x δ∈,则存在10δ>,使得10(,)(,)O x O x δδ⊂. 显然有()()''''''1'''''',(,),(,)sup ()()sup ()()y y O x y y O x f y f y f y f y δδε∈∈-≤-<.这表明()x ωε<,x E ∈. 故0(,)O x E δ⊂,说明E 中的点全是内点,E 是开集. (2). 注意到连续点的振幅是零,不连续点的振幅大于零. 设不连续点的全体是K . 令11:()n K x R x n ω⎧⎫=∈≥⎨⎬⎩⎭. 则{}n K 是闭集列,且1nn K K ∞==U ,即K 是σF 集.21. 证明:]1,0[中无理数的全体不是σF 集.证明:反证法. 若[0,1]\Q 是σF 集,则1[0,1]\n n Q E ∞==U,其中{}n E 是]1,0[中的闭集列. 因为每个n E 都是闭集且都不含有理数,所以它必是疏朗集(因若不疏朗,则n E 中必有邻域,而任意邻域中都有有理数). 而]1,0[中有理数的全体[0,1]Q I 是可数集,设{}{}121[0,1],,,,n n n Q r r r r ∞===I L K U . 单点集列{}n r 当然是疏朗集列. 结合起来,有()()(){}()11[0,1][0,1]\[0,1]n n n n Q Q E r ∞∞====U I UU U,等式的右边都是疏朗集,故上式表明闭区间]1,0[可表示成一列疏朗集的并,与第15题矛盾. 22. 证明:定义在]1,0[上具有性质:“在有理点处连续,在无理点处不连续”的函数不存在.证明:结合第20题(2)和第21题直接得结论.23. 设n R E ⊂,证明E 的任意开覆盖必有至多可数的子覆盖. (Lindelof 定理)证明:设{}:E αα∈Λ是E 的任一开覆盖. 任取E 中的点x ,必有某α∈Λ,使得x E α∈.存在有理开区间x I ,使得x x I E α∈⊂. (*)就得到E 的有理开区间族覆盖{}:x I x E ∈(称为{}:E αα∈Λ的加细开覆盖),其中x I 对某个E α满足(*)式. 因为有理开区间的全体是可数集,所以{}:x I x E ∈作为集合来看是至多可数集,记为{}n I . 则nn E I⊂U ,对n I ,取满足(*)式的相应E α记为n E ,这时{}n E 是至多可数个且覆盖E .24. 用Borel 有限覆盖定理证明Bolzano-Weierstrass 定理.证明:反证法. 设E 是有界的无限集. 若E 没有极限点,则它是有界闭集,还是孤立集. 由孤立性,对任意的x E ∈,存在()0x δ>使得{}(,())O x x E x δ=I(*)这样,得到满足(*)式的开球族{}(,()):O x x x E δ∈且覆盖E . 因E 是有界闭集,由Borel 有限覆盖定理,存在有限的子覆盖,记为{}():1,,i O x i k =L . 即有1()ki i E O x =⊂U,又E是无限集,所以至少存在一个()i O x 含有E 中的多个点,这与(*)式矛盾.25. 设n E R ⊂是G δ集,且E 含于开集I 之中,则E 可表为一列含于I 的递减开集之交. 证明:设1nn E E ∞==I,其中{}n E 是开集列. 取1n n k k F E ==I ,则{}n F 是递减的开集列(因有限个开集的交是开集),且1n n E F ∞==I. 又I 是开集,故{}n F I I 是含于I 中的递减开集列. 结合E I ⊂,得()()11nn n n E E I F I F I ∞∞=====I I I II .{}n F I I为所求.26. 设{}()n f x 为n R 上的连续函数列. 证明:点集{}:lim ()0n E x f x =>为一F σ集. 证明:注意到对任意的a ,{}[]:()n n x f x a f a ≥=≥都是闭集(第18题). 而{}111:lim ()0n nk N n N E x f x f k ∞∞∞===⎡⎤=>=≥⎢⎥⎣⎦U U I. 又1nn N f k ∞=⎡⎤≥⎢⎥⎣⎦I是闭集(任意多个闭集的交还是闭集),结合上式表明E 为一F σ集. 27. 设G 为Cantor 开集,求'G .解:由Cantor 集是疏朗的,可得'[0,1]G = 28. 证明:1R 中既开又闭的集合只能是1R 或∅.证明:设A 是非空的既开又闭集. 它必有构成区间,不妨设),(b a 是A 的一个构成区间.若a 有限, 则A a ∉; 另一方面,由A 是闭集得A A b a b a a ⊂⊂=∈')',(],[, 得到矛盾. 所以a =-∞,同理得b =+∞. 因此1A R =,所以1R 中既开又闭的集或是空集或是1R .实际上:n R 中既开又闭的集或是空集或是n R .证明: 反证法. 设nR A ⊂是既开又闭的非空又非nR 的集合. 则必存在nx R ∈,但x A ∉. 一方面因为A 是非空闭集, 所以存在A y ∈, 使得()()0,,>=y x A x ρρ. 另一方面, 因为A 又是开集, 所以y 是内点,而取得非零距离的点绝不能是内点(只能在边界上达到非零的距离),就导出了矛盾, 所以n R 中既开又闭的集或是空集或是nR . 29. 1R 中开集(闭集)全体所成之集的势为c .证明:因为开集的余集是闭集、闭集的余集是开集, 且不同集合的余集是不同的, 所以开集全体的势和闭集全体的势是一样的.设开集的全体是F . 由于全体开区间{}b a b a F <=:),(1()(b a 可取负(正)无穷)的势是c , 所以F 的势不小于c . 任取开集A F ∈, 由开集的构造知道Y ),(i i b a A =(是至多可列个并). 作对应{}ΛΛ;;,;,)(2211b a b a A =ϕ(如果是有限并,后面的点全用0代替), 则该对应是从F 到R ∞一个单射(因不同开集的构造不同), 就有F 的势不大于R ∞的势c . 综上所述,直线上开集的全体的势是c .实际上:n R 中开集(闭集)全体所成之集的势为c .证明:设n R 中开集的全体是F ,易知F 的势不小于c . 由n R 中开集的构造,每个开集A F ∈都可表示成可数多个互不交的左闭右开的有理方区间(平行坐标轴,中心的坐标和边长都是有理点,有理数){}():n I A n N ∈的并,且开集不同时表示不完全相同. 有理方区间的全体K 是可数集,所以K 的子集的全体所成之集2K 的势是2ac =. 让开集A 和它的表示{}():n I A n N ∈对应,则该对应是从F 到2K 的单射,这表明F 的势不超过c .30. 证明:nR 中的每个开集或闭集均为F σ集和G δ集.证明:设E 是闭集,它当然是F σ集(取闭集列全是E 自身即可). 令{}1:(,)n nE x x E ρ=<,则{}n E 是包含E 的开集列(第32题). 实际上,有1n n E E ∞==I. (*)显然,左是右的子集. 任取右边的元x ,则()n x E n ∈∀,即1(,)()n x E n ρ<∀,这表明(,)0x E ρ=,因此x E E ∈=,说明右边是左边的子集. 因此(*)式表明闭集E 是G δ集.由对偶性得到开集既是F σ集也是G δ集.31. 非空集合nF R ⊂具有性质:*,nx R y F ∀∈∃∈使*(,)(,)x y x F ρρ=,证明F 是闭集.证明:任取'x F ∈,则存在{}n x F ⊂,使0n x x -→,故 0(,)0n x F x x ρ≤≤-→.因此(,)0x F ρ=. 由题设,存在*y F ∈使得*(,)(,)0x y x F ρρ==,故*x y F =∈. 由'x F ∈的任意性得'F F ⊂,即F 是闭集.由于点到闭集的距离可达, 该性质是F 成为闭集的充要条件.32. 设集合,0nE R d ⊂>,点集U 为{}:(,)U x x E d ρ=<. 证明E U ⊂且U 是开集.证明:E U ⊂是显然的. 法一. 由第34题,()(,)f x x E ρ=是n R 上的连续函数,而{}:()U x f x d =<,再由第18题知U 是开集.法二. 直接证U 中的点全是内点. 任取x U ∈,则(,)x E r d ρ=<. 取正数d r δ<-. 当ny R ∈满足(,)x y ρδ<时,根据集合距离的不等式得(,)(,)(,)y E x E x y r d ρρρδ≤+<+<,即表明(,)O x U δ⊂,故x 是U 的内点. 由x U ∈的任意性知U 是开集.33. 设,nE F R ⊂是不相交的闭集,证明:存在互不相交的开集,U V ,使得,E U F V ⊂⊂.证明:法一. 由第35题,存在n R 上的连续函数()f x 使得{}:()0E x f x ==且{}:()1F x f x ==. 则{}{}1142:(),:()U x f x V x f x =<=>都是开集(由第18题)且不相交,同时还满足,E U F V ⊂⊂.法二. 因为,E F 是互不相交的闭集,所以,ccE F 是开集,且,ccE F F E ⊂⊂. 任取,c x E F ∈⊂ 因c F 是开集,故存在邻域()(,())O x O x x δ=,使得()()cx O x O x F ∈⊂⊂,即 ()O x F =∅I . (1)这样就得到E 开覆盖{}():O x x E ∈,且满足(1). 又集合E 的任一开覆盖一定有至多可数的子覆盖(第23题),所以E 可以用可数个开球()O x 来覆盖,记为{}1n n O ∞=. 即有1n n E O ∞=⊂U 且,()n O F n =∅∀I . (2)同理,存在可数个开球{}1n n B ∞=使得1n n F B ∞=⊂U 且,()n B E n =∅∀I (3)令 11\\n n n n k n k k k U O B O B ====U U , 11\\n nn n k n k k k V B O B O ====U U .则{}{}11,n n n n U V ∞∞==均是开集列(都是开集减闭集),且,(,)n m U V n m =∅∀I . 还由(2)(3)式知{}{}11,n n n n U V ∞∞==还分别是,E F 的开覆盖(因由构造,n O 中去掉的都不是E 中的点). 取11,n n n n U U V V ∞∞====U U ,则它们即为所求.34. 设,nE R E ⊂≠∅,证明(,)x E ρ作为x 的函数在n R 上是一致连续的.证明:命题直接由不等式(,)(,)x E y E x y ρρ-≤-得到.35. 设,E F 为n R 中互不相交的非空闭集,证明存在n R 上的连续函数()f x 使得:(1). 0()1,nf x x R ≤≤∀∈;(2). {}:()0E x f x ==且{}:()1F x f x ==. 证明: 实际上(,)()(,)(,)x E f x x E x F ρρρ=+满足要求.36. 设0,n nE R x R ⊂∈. 令{}{}00:E x x x x E +=+∈,即{}0E x +是集合E 的平移,证明:若E 是开集,则{}0E x +也是开集.证明:因为开球平移后还是开球.。