当前位置:文档之家› ip协议字段解析

ip协议字段解析

IP包的协议字段

switch(Protocol){

case 0: return "HOPOPT"; //IPv6逐跳选项

case 1: return "ICMP"; //控制消息

case 2: return "IGMP"; //组管理

case 3: return "GGP"; //网关对网关

case 4: return "IP in IP"; //IP中的IP(封装)

case 5: return "ST"; //流

case 6: return "TCP"; //TCP传输控制

case 7: return "CBT"; //CBT

case 8: return "EGP"; //外部网关协议

case 9: return "IGB"; //任何专用内部网关(Cisco将其用于IGRP)case 10: return "BBN-RCC-MON"; //BBN RCC监视

case 11: return "NVP-II"; //网络语音协议

case 12: return "PUP"; //PUP

case 13: return "ARGUS"; //ARGUS

case 14: return "EMCON"; //EMCON

case 15: return "XNET"; //跨网调试器

case 16: return "CHAOS"; //Chaos

case 17: return "UDP"; //用户数据报

case 18: return "MUX"; //多路复用

case 19: return "DCN-MEAS"; //DCN测量子系统

case 20: return "HMP"; //主机监视

case 21: return "PRM"; //数据包无线测量

case 22: return "Xns_IDP"; //XEROX NS IDP

case 23: return "TRUNK-1"; //第1主干

case 24: return "TRUNK-2"; //第2主干

case 25: return "LEAF-1"; //第1叶

case 26: return "LEAF-2"; //第2叶

case 27: return "RDP"; //可靠数据协议

case 28: return "IRTP"; //Internet可靠事务

case 29: return "ISO-TP4"; //ISO传输协议第4类

case 30: return "NETBLT"; //批量数据传输协议

case 31: return "MFE-NSP"; //MFE网络服务协议

case 32: return "MERIT-INP"; //MERIT节点间协议

case 33: return "SEP"; //顺序交换协议

case 34: return "3PC"; //第三方连接协议

case 35: return "IDPR"; //IDPR域间策略路由协议

case 36: return "XTP"; //XTP

case 37: return "DDP"; //数据报传送协议

case 38: return "IDPR-CMTP"; //IDPR控制消息传输协议

case 39: return "TP++"; //TP++传输协议

case 40: return "IL"; //IL传输协议

case 41: return "IPv6"; //IPv6

case 43: return "IPv6-Route"; //IPv6的路由标头

case 44: return "IPv6-Frag"; //IPv6的片段标头

case 45: return "IDRP"; //域间路由协议

case 46: return "RSVP"; //保留协议

case 47: return "GRE"; // 通用路由封装

case 48: return "MHRP"; // 移动主机路由协议

case 49: return "BNA"; // BNA

case 50: return "ESP"; // IPv6 的封装安全负载

case 51: return "AH"; // IPv6 的身份验证标头

case 52: return "I-NLSP"; // 集成网络层安全性TUBA

case 53: return "SWIPE"; // 采用加密的IP

case 54: return "NARP"; // NBMA 地址解析协议

case 55: return "MOBILE IP"; // 移动性

case 56: return "TLSP"; // 传输层安全协议使用Kryptonet 密钥管理case 57: return "SKIP"; // SKIP

case 58: return "IPv6-ICMP"; // 用于IPv6 的ICMP

case 59: return "IPv6-NoNxt"; // 用于IPv6 的无下一个标头

case 60: return "IPv6-Opts"; // IPv6 的目标选项

case 61: return "Anyone Betwen Hosts"; // 任意主机内部协议

case 62: return "CFTP"; // CFTP

case 63: return "Anyone of LocalHost"; // 任意本地网络

case 64: return "SAT-EXPAK"; // SATNET 与后台EXPAK

case 65: return "KRYPTOLAN"; // Kryptolan

case 66: return "RVD MIT"; // 远程虚拟磁盘协议

case 67: return "IPPC"; // Internet Pluribus 数据包核心

case 68: return "Any Distributed File System"; //任意分布式文件系统case 69: return "SAT-MON"; // SATNET 监视

case 70: return "VISA"; // VISA 协议

case 71: return "IPCV"; // Internet 数据包核心工具

case 72: return "CPNX"; // 计算机协议网络管理

case 73: return "CPHB"; // 计算机协议检测信号

case 74: return "WSN"; // 无线电脑网络

case 75: return "PVP"; // 数据包视频协议

case 76: return "BR-SAT-MON"; // 后台SATNET 监视

case 77: return "SUN-ND"; // SUN ND PROTOCOL-Temporary

case 78: return "WB-MON"; // WIDEBAND 监视

case 79: return "WB-EXPAK"; // WIDEBAND EXPAK

case 80: return "ISO-IP"; // ISO Internet 协议

case 81: return "VMTP"; // VMTP

case 82: return "SECURE-VMTP"; // SECURE-VMTP

case 83: return "VINES VINES";

case 84: return "TTP"; // TTP

case 85: return "NSFNET-IGP"; // NSFNET-IGP

case 87: return "TCF"; // TCF

case 88: return "EIGRP"; // EIGRP

case 89: return "OSPFIGP"; // OSPFIGP

case 90: return "Sprite-RPC"; // Sprite RPC 协议

case 91: return "LARP"; // 轨迹地址解析协议

case 92: return "MTP"; // 多播传输协议

case 93: return "AX.25"; // AX.25 帧

case 94: return "IPIP"; // IP 中的IP 封装协议

case 95: return "MICP"; // 移动互联控制协议

case 96: return "SCC-SP"; // 信号通讯安全协议

case 97: return "ETHERIP"; // IP 中的以太网封装

case 98: return "ENCAP"; // 封装标头

case 99: return "Any Encrypt Plan"; //任意专用加密方案case 100: return "GMTP"; // GMTP

case 101: return "IFMP"; // Ipsilon 流量管理协议

case 102: return "PNNI"; // IP 上的PNNI

case 103: return "PIM"; // 独立于协议的多播

case 104: return "ARIS"; // ARIS

case 105: return "SCPS"; // SCPS

case 106: return "QNX"; // QNX

case 107: return "A/N"; // 活动网络

case 108: return "IPComp"; // IP 负载压缩协议

case 109: return "SNP"; // Sitara 网络协议

case 110: return "Compaq-Peer"; // Compaq 对等协议case 111: return "IPX-in-IP"; // IP 中的IPX

case 112: return "VRRP"; // 虚拟路由器冗余协议case 113: return "PGM"; // PGM 可靠传输协议

case 114: return "Zero Hop Protocal"; //任意0 跳协议case 115: return "L2TP"; // 第二层隧道协议

case 116: return "DDX"; // D-II 数据交换(DDX)

case 117: return "IATP"; // 交互式代理传输协议

case 118: return "STP"; // 计划传输协议

case 119: return "SRP"; // SpectraLink 无线协议

case 120: return "UTI"; // UTI

case 121: return "SMP"; // 简单邮件协议

case 122: return "SM"; // SM

case 123: return "PTP"; // 性能透明协议

case 124: return "ISIS"; // over IPv4

case 125: return "FIRE"; //

case 126: return "CRTP"; // Combat 无线传输协议case 127: return "CRUDP"; // Combat 无线用户数据报case 128: return "SSCOPMCE"; //

case 129: return "IPLT"; //

case 130: return "SPS"; // 安全数据包防护case 131: return "PIPE"; // IP 中的专用IP 封装case 132: return "SCTP"; // 流控制传输协议case 133: return "FC"; // 光纤通道

case 255: return "保留"; //

default: return "未分配";

}

第7章 IP地址与ARP协议

第七章 IP地址与ARP协议 IP地址是互联网使用的一种通用地址形式,用于标识互联网上的结点到一个网络的连接。而ARP协议则用于将IP地址映射到物理地址。 7.1 IP地址的作用 以太网利用MAC地址(物理地址)标识网络中的一个结点,两个以太网结点的通信需要知道对方的MAC地址。但是,以太网并不是唯一的网络,世界上存在着各种各样的网络,这些网络使用的技术不同,物理地址的长度、格式等表示方法也不相同〔例如以太网的物理地址采用48位的二进制数表示,而电话网则采用14位的十进制数表示)。因此,如何统一结点的地址表示方式、保证信息跨网传输是互联网面临的一大难题。 显然,统一物理地址的表示方法是不现实的,因为物理地址表示方法是和毎一种物理网络的具体特性联系在一起的。因此,互联网各种物理网络地址的“统一”必须通过上层软件完成。确切地说,互联网对各种物理网络地址的“统一”要在IP层完成。 IP协议提供了一种互联网通用的地址格式,该地址由32位的二进制数表示,用于屏蔽各种物理网络的地址差异。IP协议规定的地址叫做IP地址,IP地址由IP地址管理机构进行统一管理和分配,保证互联网上运行的设备(如主机、路由器等)不会产生地址冲突。

在互联网上,主机可以利用IP址标识。但是,一台IP地址标识一台主机的说法并不准确。严格地讲,IP地址指定的不是一台主机,而是主机到一个网络的连接。因此,具有多个网络连接的互联网设备就应具有多个IP地址;在图7-1中,路由器的两个连接分别与两个不同的网络相连,因此它应具有两个不同的IP 地址。多宿主主机(装有多块网卡的计算机)由于每一块网卡都可以提供一条物理连接,因此它也应该具有多个IP地址。在实际应用中,还可以将多个IP地址绑定到一条物理连接上,使一条物理连接具有多个IP地址。 图7-1 单网卡双地址 多个ip地 址 两个网卡

网络协议分析——抓包分析

计算机网络技术及应用实验报告开课实验室:南徐学院网络实验室

第一部分是菜单和工具栏,Ethereal提供的所有功能都可以在这一部分中找到。第二部分是被捕获包的列表,其中包含被捕获包的一般信息,如被捕获的时间、源和目的IP地址、所属的协议类型,以及包的类型等信息。 第三部分显示第二部分已选中的包的每个域的具体信息,从以太网帧的首部到该包中负载内容,都显示得清清楚楚。 第四部分显示已选中包的16进制和ASCII表示,帮助用户了解一个包的本来样子。 3、具体分析各个数据包 TCP分析:

源端口 目的端口序号 确认号 首部长度窗口大小值

运输层: 源端口:占2个字节。00 50(0000 0000 1001 0000) 目的端口:占2个字节。C0 d6(1100 0000 1101) 序号:占四个字节。b0 fe 5f 31(1011 0000 0101 1110 0011 0001) 确认号:占四个字节。cd 3e 71 46(1100 1101 0011 1110 0110 0001 0100 0110) 首部长度:共20个字节:50(0101 0001) 窗口大小值:00 10(0000 0000 0001 00000) 网络层: 不同的服务字段:20 (0010 0000)

总的长度:00 28(0000 0000 0010 10000) 识别:81 28(1000 0001 0010 10000) 片段抵消:40 00(0100 0000 0000 0000) 生存时间:34 (0011 0100) 协议: 06(0000 0110)

第6章TCPIP协议与IP路由

本章提要: 在TCP/IP 网络中,主机用IP地址来标识和区分。IP地址由网络地址和主机地址(或称网络号和主机号)两部分组成。 IP地址分为A、B、C、D和E五类。对前三类地址,还可划分子网。划分子网后,IP地址可视为由网络地址、子网地址和主机地址三部分组成。划分子网是通过改变子网掩码的代表网络号的二进制位的长度来实现的。 与子网划分相反,把若干个网络地址用一个统一的网络号来表示的编址方式称为超网编址,超网编址及其寻址方式称为无类域间路由。 路由是指对到达目标网络的地址的路径做出选择,也指被选出的路径本身。路由器中的路由表就像一张“网络地图”,记录有到达各个目标网络的路径。 对路由表中“记录”的填写可以采用人工方式,也可以由路由协议自动进行,这分别称之为静态路由配置和动态路由配置。 静态路由配置需要制定目标网络地址和下一跳IP地址或本路由器(连接下一跳路由器)的端口名称。 6.1 CP/IP协议 TCP/IP协议,作为Internet事实上的协议标准,在计算机网络领域中占有特别重要的地位。TCP/IP指的是整个TCP/IP协议族,它是一个具有四层结构的协议系统,由若干协议组成,这四个层次由高到低依次是:应用层、传输层、Internet层和网络接口层。我们把这样的协议组合称为TCP/IP协议栈,也称之为TCP/IP模型。 由于TCP/IP在设计时就是要使得异种机型、异种网络能够互联,要与具体的物理传输媒体无关,故其没有对数据链路层和物理层做出规定,只是简单地把最低的一层命名为网络接口层。 除网络接口层外,其余各层都由多个协议组成。 在Internet层,IP协议封装的数据报文能够被路由器从一个子网传送到另一个子网,故称IP 协议是可路由的协议;IP数据报的路由称为IP路由。通过配置路由器,使IP数据报在路由器之间传送并到达目标网络,相关的配置称为IP路由配置。 以下介绍TCP/IP的组成。TCP/IP实际上是许多具体协议的总称。这些协议适用于连接不同的网络系统,包括局域网和广域网。下面就各层的主要协议做一简介。 1. 应用层 TCP/IP的应用层与OSI参考模型的应用层、表示层、会话层相对应。除了HTTP外主要的协议还有:

wireshark抓包分析了解相关协议工作原理

安徽农业大学 计算机网络原理课程设计 报告题目wireshark抓包分析了解相关协议工作原理 姓名学号 院系信息与计算机学院专业计算机科学与技术 中国·合肥 二零一一年12月

Wireshark抓包分析了解相关协议工作原理 学生:康谦班级:09计算机2班学号:09168168 指导教师:饶元 (安徽农业大学信息与计算机学院合肥) 摘要:本文首先ping同一网段和ping不同网段间的IP地址,通过分析用wireshark抓到的包,了解ARP地址应用于解析同一局域网内IP地址到硬件地址的映射。然后考虑访问抓到的包与访问抓到的包之间的区别,分析了访问二者网络之间的不同。 关键字:ping 同一网段不同网段 wireshark 协议域名服务器 正文: 一、ping隔壁计算机与ping 抓到的包有何不同,为什么?(1)、ping隔壁计算机 ARP包:

ping包: (2)ing ARP包:

Ping包: (3)考虑如何过滤两种ping过程所交互的arp包、ping包;分析抓到的包有

何不同。 答:ARP地址是解决同一局域网上的主机或路由器的IP地址和硬件地址的映射问题,如果要找的主机和源主机不在同一个局域网上,就会解析出网 关的硬件地址。 二、访问,抓取收发到的数据包,分析整个访问过程。(1)、访问 ARP(网络层): ARP用于解析IP地址与硬件地址的映射,本例中请求的是默认网关的硬件地址。源主机进程在本局域网上广播发送一个ARP请求分组,询问IP地址为192.168.0.10的硬件地址,IP地址为192.168.0.100所在的主机见到自己的IP 地址,于是发送写有自己硬件地址的ARP响应分组。并将源主机的IP地址与硬件地址的映射写入自己ARP高速缓存中。 DNS(应用层): DNS用于将域名解析为IP地址,首先源主机发送请求报文询问 的IP地址,DNS服务器210.45.176.18给出的IP地址为210.45.176.3

IP协议的定义

IP协议的定义、IP地址的分类及特点 什么是IP协议,IP地址如何表示,分为几类,各有什么特点? 为了便于寻址和层次化地构造网络,IP地址被分为A、B、C、D、E五类,商业应用中只用到A、B、C三类。 IP协议(Internet Protocol)又称互联网协议,是支持网间互连的数据报协议,它与TCP协议(传输控制协议)一起构成了TCP/IP协议族的核心。它提供网间连接的完善功能,包括IP数据报规定互连网络范围内的IP地址格式。Internet 上,为了实现连接到互联网上的结点之间的通信,必须为每个结点(入网的计算机)分配一个地址,并且应当保证这个地址是全网唯一的,这便是IP 地址。目前的IP地址(IPv4:IP第4版本)由32个二进制位表示,每8位二进制数为一个整数,中间由小数点间隔,如159.226.41.98,整个IP地址空间有4组8位二进制数,由表示主机所在的网络的地址(类似部队的编号)以及主机在该网络中的标识(如同士兵在该部队的编号)共同组成。为了便于寻址和层次化的构造网络,IP地址被分为A、B、C、D、E五类,商业应用中只用到A、B、C三类。 * A类地址:A类地址的网络标识由第一组8位二进制数表示,网络中的主机标识占3组8位二进制数, A类地址的特点是网络标识的第一位二进制数取值必须为“0”。不难算出,A类地址允许有126个网段,每个网络大约允许有1670万台主机,通常分配给拥有大量主机的网络(如主干网)。 * B类地址:B类地址的网络标识由前两组8位二进制数表示,网络中的主机标识占两组8位二进制数, B类地址的特点是网络标识的前两位二进制数取值必须为“10”。 B类地址允许有16384个网段,每个网络允许有65533台主机,适用于结点比较多的网络(如区域网)。 * C类地址:C类地址的网络标识由前3组8位二进制数表示,网络中主机标识占1组8位二进制数, C类地址的特点是网络标识的前3位二进制数取值必须为“110”。具有C类地址的网络允许有254台主机,适用于结点比较少的网络(如校园网)。为了便于记忆,通常习惯采用4个十进制数来表示一个IP 地址, 十进制数之间采用句点“.”予以分隔。这种IP地址的表示方法也被称为点分十进制法。如以这种方式表示, A类网络的IP地址范围为1.0.0.1- 127.255.255.254; B类网络的IP地址范围为:128.1.0.1-191.255.255.254;C类网络的IP地址范围为:192.0.1.1-223.255.255.254。 由于网络地址紧张、主机地址相对过剩,采取子网掩码的方式来指定网段号。TCP/IP协议与低层的数据链路层和物理层无关,这也是TCP/IP的重要特点。正因为如此,它能广泛地支持由低两层协议构成的物理网络结构。目前已使用TCP/IP连接成洲际网、全国网与跨地区网。

IPV6抓包协议分析

IPV6协议抓包分析 一、实践名称: 在校园网配置使用IPv6,抓包分析IPv6协议 二、实践内容和目的 内容:网络抓包分析IPv6协议。 目的:对IPv6协议的更深层次的认识,熟悉IPv6数据报文的格式。 三、实践器材: PC机一台,网络抓包软件Wireshark 。 四、实验数据及分析结果: 1.IPv6数据报格式: 2. 网络抓包截获的数据:

3. 所截获的IPv6 的主要数据报为:? Internet Protocol Version 6?0110 .... = Version: 6?. (0000) 0000 .... .... .... .... .... = Traffic class: 0x00000000?.... .... .... 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000 Payload length: 93 Next header: UDP (0x11)?Hop limit: 1?Source: fe80::c070:df5a:407a:902e (fe80::c070:df5a:407a:902e) Destination: ff02::1:2 (ff02::1:2) 4. 分析报文: 根据蓝色将报文分成三个部分:

第一部分: 33 33 00 01 00 02,目的组播地址转化的mac地址, 以33 33 00表示组播等效mac;00 26 c7 e7 80 28, 源地址的mac地址;86 dd,代表报文类型为IPv6 (0x86dd); 第二部分: 60,代表包过滤器"ip.version == 6"; 00 00 00,Traffic class(通信类别): 0x00000000; 00 5d,Payload length(载荷长度,即报文的最后一部分,或者说是报文携带的信息): 32; 11,Next header(下一个封装头): ICMPv6 (17); 01,Hop limit(最多可经历的节点跳数): 1; fe 80 00 00 00 00 00 00 c0 70 df 5a 40 7a 90 2e,源ipv6地址; ff 02 00 00 00 00 00 00 00 00 00 00 00 01 00 02,目的ipv6地址; 第三部分(报文携带的信息): 02,表示类型为Neighbor Solicitation (2); 22,表示Code: 38; 02 23是Checksum(校验和): 0x6faa [correct]; 00 5d 36 3a,Reserved(保留位): 00000000; fe 80 00 00 00 00 00 00 76 d4 35 ff fe 03 56 b0,是组播地址中要通信的那个目的地址; 01 01 00 23 5a d5 7e e3,表示

TCPIP协议分析

TCP/IP协议分析及应用 在计算机网络的发展过程中,TCP/IP网络是迄今为止对人类社会影响最重要的一种网络。TCP和IP是两种网络通信协议,以这两种协议为核心协议的网络总称为TCP/IP网络。人们常说的国际互联网或因特网就是一种TCP/IP网络,大多数企业的内部网也是TCP/IP网络。 作为一名学习计算机的学生,我们一定要对TCP/IP协议进行深刻的解析。通过对协议的分析进一步了解网络上数据的传送方式和网络上出现的问题的解决方法。本实验就是对文件传输协议进行分析来确定FTP协议工作方式。 目的:通过访问FTP:202.207.112.32,向FTP服务器上传和下载文件。用抓包工作来捕捉数据在网络上的传送过程。为的方便数据包的分析,通过上传一个内容为全A的TXT文件,来更直观的分析文件传输的过程。 过程: 1.在本机上安装科莱抓包软件 2.对科莱进行进滤器的设置(arp、ftp、ftp ctrl、ftp data) 3.通过运行CMD窗口进行FTP的访问 4.用PUT和GET进行文件的上传与下载 5.对抓到的包进行详细的分析 CMD中的工作过程: C:\Documents and Settings\Administrator>ftp 202.207.112.32 Connected to 202.207.112.32. 220 Serv-U FTP Server v5.1 for WinSock ready... User (202.207.112.32:(none)): anonymous //通过匿名方式访问 331 User name okay, please send complete E-mail address as password. Password: 230 User logged in, proceed. ftp> cd 学生作业上传区/暂存文件夹 250 Directory changed to /学生作业上传区/暂存文件夹 ftp> put d:\aaa123.txt //上传aaa123.txt文件 200 PORT Command successful. 150 Opening ASCII mode data connection for aaa123.txt.

tcp,ip详解卷1,协议,下载

竭诚为您提供优质文档/双击可除tcp,ip详解卷1,协议,下载 篇一:tcp_ip协议详解 tcp/ip协议详解 这部分简要介绍一下tcp/ip的内部结构,为讨论与互联网有关的安全问题打下基础。tcp/ip协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如t1和x.25、以太网以及Rs-232串行接口)之上。确切地说,tcp/ip协议是一组包括tcp协议和ip协议,udp (userdatagramprotocol)协议、icmp (internetcontrolmessageprotocol)协议和其他一些协议的协议组。 tcp/ip整体构架概述 tcp/ip协议并不完全符合osi的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而tcp/ip通讯协议采用了4层的层级结构,每一层都呼叫它的

下一层所提供的网络来完成自己的需求。这4层分别为:应用层:应用程序间沟通的层,如简单电子邮件传输(smtp)、文件传输协议(Ftp)、网络远程访问协议(telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(tcp)、用户数据报协议(udp)等,tcp和udp给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(ip)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如ethernet、serialline等)来传送数据。 tcp/ip中的协议 以下简单介绍tcp/ip中的协议都具备什么样的功能,都是如何工作的: 1.ip 网际协议ip是tcp/ip的心脏,也是网络层中最重要的协议。 ip层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---tcp或udp层;相反,ip层也把从tcp或udp层接收来的数据包传

tcpip协议知识点与练习题

第一章 ?TCPIP和OSI分层模型,包含了哪些层,作用是什么 tcp五层 osi七层 ?每层名称,作用不用原话背下来,理解就可以,能用自己的话写下来就行。

?上下层的关系,谁封装谁(tcp),谁在谁的内部(外部) ?TCPIP协议和OSI协议异同点? 相同点:都是层次结构,按照功能分层 不同点:一个是五层,一个是七层;OSI之间有严格的调用关系,两个N层实体间进行通信必须通过下一层N-1层实体,不能越级;TCPIP可以越过紧邻的下一层直接使用更底层所提供的服务,减少了不必要的开销,效率更高。 ?如果题目没有明确说明的情况下,所有的网络环境默认为以太网 第三章 ?以以太网为例,搞清楚帧的最短和最长的限制分别是多少 https:///u012503786/article/details/78615551 46-1500 数据部分 计算完整的帧长,需要加上头部和尾部,头部+尾部18字节,所以帧的范围是64-1518 64是怎么来的?46+18 ?CSMA/CD 载波监听冲突检测 一个帧从节点到其他节点发送时,如果其他节点也发送数据,则发生冲突。标准以太网最长距离的往返时间是51.2微妙,这个时间称为冲突窗口。如果发生了冲突,则会在冲突窗口内检测出来,如果没有发生冲突,之后其他节点再发出数据帧时,就会侦听到信道忙,所以就不会发送数据,所以也就不会产生冲突。他会等待一段随机的时间再次试探性地发送,这种产生随机时间的算法叫退避算法 ?每个层上传输数据的名称大家要掌握 第一层比特流 第二层帧

第三层IP数据报 第四层UDP数据报 ?TCP报文 各个层上常用的设备名字 设备都是向下兼容的 物理层传比特流 链路层帧 网络层ip数据报 ?链路层依靠MAC地址进行寻址,网络层依靠IP地址进行寻址 ?MAC地址怎么来的,网卡在出厂时封印在网卡上的,不能重复,不能改变,所以网卡具有唯一性。 ?既然MAC地址是唯一的,为什么还需要IP地址呢? 局域网内IP地址一般都是靠DHCP动态分布的,所以IP和计算机不是绑定的,假设一台机器是192.168.1.1,当这台机器下线了,这个IP就被分配给其他机器了,此时通信就要出问题了。但是MAC和计算机是一一对应的,所以局域网内使用MAC进行通信。早期的以太网只有交换机,因为那时网络规模比较小,没有路由器的,以太网通过MAC方式寻址,后来有了互联网,为了兼容原来的模式,采用了IP+MAC地址通信的方式,为啥不干脆取消MAC呢,因为MAC技术基础和应用太广泛了,如果推倒重建代价太大,看一下现在的IPV6为什么不能推广起来就是这个原因。 机器刚开机时,没有IP地址的,所以要通过MAC地址通知DHCP服务器给他一个IP地址才能使用,所以从这个角度来说MAC地址也不能取消。 第六章 ?ABC类地址前缀 ?ip数据报头部长度是多少,最大长度是多少 头部是20 最大1500-20 1500是帧数据部分最大 ?具体的数据报格式不用背,但是字段的含义和长度要知道

tcp-ip协议详细讲解

TCP/IP协议详解 这部分简要介绍一下TCP/IP的部结构,为讨论与互联网有关的安全问题打下基础。TCP/IP协议组之所以流行,部分原因是因为它可以用在各种各样的信道和底层协议(例如T1和X.25、以太网以及RS-232串行接口)之上。确切地说,TCP/IP协议是一组包括TCP协议和IP协议,UDP(User Datagram Protocol)协议、ICMP(Internet Control Message Protocol)协议和其他一些协议的协议组。 TCP/IP整体构架概述 TCP/IP协议并不完全符合OSI的七层参考模型。传统的开放式系统互连参考模型,是一种通信协议的7层抽象的参考模型,其中每一层执行某一特定任务。该模型的目的是使各种硬件在相同的层次上相互通信。这7层是:物理层、数据链路层、网路层、传输层、话路层、表示层和应用层。而TCP/IP通讯协议采用了4层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。这4层分别为: 应用层:应用程序间沟通的层,如简单电子传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。 传输层:在此层中,它提供了节点间的数据传送服务,如传输控制协议(TCP)、用户数据报协议(UDP)等,TCP和UDP给数据包加入传输数据并把它传输到下一层中,这一层负责传送数据,并且确定数据已被送达并接收。 互连网络层:负责提供基本的数据封包传送功能,让每一块数据包都能够到达目的主机(但不检查是否被正确接收),如网际协议(IP)。 网络接口层:对实际的网络媒体的管理,定义如何使用实际网络(如Ethernet、Serial Line等)来传送数据。 TCP/IP中的协议 以下简单介绍TCP/IP中的协议都具备什么样的功能,都是如何工作的: 1. IP 网际协议IP是TCP/IP的心脏,也是网络层中最重要的协议。 IP层接收由更低层(网络接口层例如以太网设备驱动程序)发来的数据包,并把该数据包发送到更高层---TCP或UDP层;相反,IP层也把从TCP或UDP层接收来的数据包传送到更低层。IP数据包是不可靠的,因为IP并没有做任何事情来确认数据包是按顺序发送的或者没有被破坏。IP数据包中含有发送它的主机的地址(源地址)和接收它的主机的地址(目的地址)。 高层的TCP和UDP服务在接收数据包时,通常假设包中的源地址是有效的。也可以这样说,IP地址形成了许多服务的认证基础,这些服务相信数据包是从一

TCP-IP协议与网络编程(A答案)

适用班级:06011102?04 5、OSI 的 _____ 规范是有关传输介质的特性标准 (A ) A 、物理层 C 、数据链路层 ,这些规范通常也参考了其他组织制定的标准。 B 、表示层 D 网络层 桂林电子科技大学试卷 2009?2010学年第1学期 课程名称:TCP/IP 协议及网络编程(A 卷 参考答案) 、选择题(每题1分,共20分) 1、 ARP 欺骗是由下列哪种类型的报文实现的? A ARP 应答报文 C 组播报文 2、 关于传输控制协议 TCP 描述正确的是 A 、 面向连接的协议,不提供可靠的数据传输 B 、 面向连接的协议,提供可靠的数据传输 C 面向无连接的服务,提供可靠数据的传输 D 面向无连接的服务,不提供可靠的数据传输 3、 SNMP 协议大传输层使用哪个协议 A ICMP 服务 C TCP 服务 4、 逻辑地址 202.112.108.158,用Ipv4 二进制表示 (A ) B 、ARP 请求报文 D RARF 报文 (B ) (B ) B 、UDP 服务 D 、SMTP 服务 32地址正确的是: (A ) A 11001010 01110000 01101100 10011110 B 、 10111101 01101100 01101100 10011001 C 10110011 11001110 10010001 00110110 D 01110111 01111100 01110111 01110110 6、套接字是指下列哪几项的组合? A 、IP 地址和协议号

B 、IP地址和端口号 C 、端口号与协议号 D 、源端口号与目的端口号

arp协议与ip协议的关系

竭诚为您提供优质文档/双击可除arp协议与ip协议的关系 篇一:实验二、分析aRp及ip协议 实验二:分析aRp及ip协议 一、实验目的 1.学会使用packettracer进行包跟踪及数据包协议格式分析。2.理解aRp工作机制,熟悉aRp协议格式。3.熟悉典型的ip协议格式。4.理解ip分段机制。 二、实验拓扑图 三、实验步骤 1、用packettracer(5.3或以上版本)打开文件 21_aRp&ip_testing.pkt.pkt。注意:Router1的eth1/0的mtu=1420b,其余均为1500b。 2、分析aRp的工作原理。 (1)在Realtime模式下,尽量清除所有设备(pc机及路由器)中的aRp缓存信息,对于不能清除(有些路由器中的aRp缓存信息不能清除)的记录下相关缓存信息。 注:pc机中查看aRp缓存的命令为arp–a,清除aRp 缓存的命令为arp–d。

路由器中查看aRp缓存的命令为Router#showarp,清除的命令为Router#cleararp-cache。 答:对Router1进行aRp缓存信息查看以及清除结果如下图一,对Router2进行aRp缓存信息查看以及清除结果如下图二,分别对pc1.10、pc1.20、pc1.30进行aRp缓存信息结果分别如图三、图四、图五,由于截图过多,所以对pc3.11、3.22、3.33、100.19、100.23、100.35、12.12的清除结果图略。 图三图五 图一 图二 图四 (2)在simulation模式下,由pc(1.10)向pc(1.20)发送一个ping包,观察包(icmp及aRp)的传递过程,同时注意相关pc机、路由器的aRp缓存变化情况,记录下相关信息,并对其中的aRp包进行协议格式分析。注意:在Filter中同时选中icmp及aRp。 答:aRp包在switch0广播,pc1.20接收到广播信息后做出响应,icmp包直接从pc1.10到pc1.20不需要广播。pc1.10和pc1.20的aRp缓存都增加了一条记录,路由器Router1的aRp缓存没有发生变化 aRp包格式:

(完整word版)网络协议抓包分析

中国矿业大学《网络协议》 姓名:李程 班级:网络工程2009-2 学号:08093672

实验一:抓数据链路层的帧 一、实验目的 分析MAC层帧结构 二、准备工作 本实验需要2组试验主机,在第一组上安装锐捷协议分析教学系统,使用其中的协议数据发生器对数据帧进行编辑发送,在第二组上安装锐捷协议分析教学系统,使用其中的网络协议分析仪对数据帧进行捕获分析。 三、实验内容及步骤 步骤一:运行ipconfig命令

步骤二:编辑LLC信息帧并发送 步骤三:编辑LLC监控帧和无编号帧,并发送和捕获:步骤四:保存捕获的数据帧 步骤五:捕获数据帧并分析 使用iptool进行数据报的捕获: 报文如下图: 根据所抓的数据帧进行分析: (1)MAC header 目的物理地址:00:D0:F8:BC:E7:06 源物理地址:00:16:EC:B2:BC:68 Type是0x800:意思是封装了ip数据报 (2)ip数据报

由以上信息可以得出: ①版本:占4位,所以此ip是ipv4 ②首部长度:占4 位,可表示的最大十进制数值是15。此ip数据报没有选项,故它的最大十进制为5。 ③服务:占8 位,用来获得更好的服务。这里是0x00 ④总长度:总长度指首都及数据之和的长度,单位为字节。因为总长度字段为16位,所以数据报的最大长度为216-1=65 535字节。 此数据报的总长度为40字节,数据上表示为0x0028。 ⑤标识(Identification):占16位。IP软件在存储器中维持一个计数器,每产生一个数据报,计数器就加1,并将此值赋给标识字段。但这个“标识”并不是序号, 因为IP是无连接的服务,数据报不存在按序接收的问题。当数据报由于长度超过网络的MTU 而必须分片时,这个标识字段的值就被复制到所有的数据报的标识字段中。相同的标识字段的值使分片后的各数据报片最后能正确地重装成为原来的数据报。 在这个数据报中标识为18358,对应报文16位为47b6 ⑥标志(Flag):占3 位,但目前只有2位有意义。标志字段中的最低位记为MF (More Fragment)。MF=1即表示后面“还有分片”的数据报。MF=0表示这已是若干数据报片中的最后一个。标志字段中间的一位记为DF(Don't Fragment),意思是“不能分片”。只有当DF=0时才允许分片。这个报文的标志是010,故表示为不分片!对应报文16位为0x40。 ⑦片偏移:因为不分片,故此数据报为0。对应报文16位为0x00。 ⑧生存时间:占8位,生存时间字段常用的英文缩写是TTL (Time To Live),其表明数据报在网络中的寿命。每经过一个路由器时,就把TTL减去数据报在路由器消耗掉的一段时间。若数据报在路由器消耗的时间小于1 秒,就把TTL值减1。当TTL值为0时,就丢弃这个数据报。经分析,这个数据报的的TTL为64跳!对应报文16位为0x40。 ⑨协议:占8 位,协议字段指出此数据报携带的数据是使用何种协议,以便使目的主机的IP层知道应将数据部分上交给哪个处理过程。这个ip数据报显示使用得是TCP协议对

TCPIP协议详解-配置选项

附录E 配置选项 我们已经看到了许多冠以“依赖于具体配置”的T C P/I P特征。典型的例子包括是否使能U D P的检验和(11 .3节),具有同样的网络号但不同的子网号的目的I P地址是本地的还是非本地的(1 8.4节)以及是否转发直接的广播(1 2.3节)。实际上,一个特定的T C P/I P实现的许多操作特征都可以被系统管理员修改。 这个附录列举了本书中用到的一些不同的T C P/I P实现可以配置的选项。就像你可能想到的,每个厂商都提供了与其他实现不同的方案。不过,这个附录给出的是不同的实现可以修改的参数类型。一些与实现联系紧密的选项,如内存缓存池的低水平线,没有描述。 这些描述的变量只用于报告的目的。在不同的实现版本中,它们的名字、默认值、或含义都可以改变。所以你必须检查你的厂商的文档(或向他们要更充分的文档)来 了解这些变量实际使用的单词。 这个附录没有覆盖每次系统引导时发生的初始化工作:对每个网络接口使用i f c o n f i g 进行初始化(设置I P地址、子网掩码等等)、往路由表中输入静态路由等等。这个附录集中描述了影响T C P/I P操作的那些配置选项。 E.1 BSD/386 版本1.0 这个系统是自从4 .2B S D以来使用的“经典”B S D配置的一个例子。因为源代码是和系统一起发布的,所以管理员可以指明配置选项,内核也可重编译。存在两种类型的选项:在内核配置文件中定义的常量(参见c o n f i g( 8)手册)和在不同的C源文件中的变量初始化。大胆而又经验丰富的管理员也可以使用排错工具修改正在运行的内核或者内核的磁盘映像中这些变量的值,以避免重新构造内核。 下面列出的是在内核配置文件中可以修改的常量。 IPFORWARDING 这个常量的值初始化内核变量i p f o r w a r d i n g。如果值为0(默认),就不转发I P数据报。如果是1,就总是使能转发功能。 GATEWAY 如果定义了这个常量,就使得I P F O R WA R D I N G的值被置为1。另外,定义这个常量还使得特定的系统表格(A R P快速缓存表和路由表)更大。 SUBNETSARELOCAL 这个常量的值初始化内核变量s u b n e t s a r e l o c a l。如果值为1(默认),一个和发送主 I P地址被认为是本地的。如果是0,只有在同一个子

各种网络协议

Windows中常见的网络协议 1.TCP/IP协议 TCP/IP协议是协议中的老大,用得最多,只有TCP/IP协议允许与internet 进行完全连接。现今流行的网络软件和游戏大都支持TCP/IP协议。 2.IPX/SPX协议 IPX/SPX协议是Novell开发的专用于NetWare网络的协议,现在已经不光用于NetWare网络,大部分可以联机的游戏都支持IPX/SPX协议,例如星际、cs。虽然这些游戏都支持TCP/IP协议,但通过IPX/SPX协议更省事,不需要任何设置。IPX/SPX协议在局域网中的用途不大。它和TCP/IP协议的一个显著不同是它不使用ip地址,而是使用mac地址。 BEUI协议 NetBEUI协议是有IBM开发的非路由协议,实际上是NetBIOS增强用户接口,是Windows 98前的操作系统的缺省协议,特别适用于在“网上邻居”传送数据,大大提高了在“网上邻居”查找电脑的速度。如果一台只装了TCP/IP协议的Windows 98电脑想加入到WINNT域,也必须安装NetBEUI协议。 4.Microsoft网络的文件和打印机共享 在局域网中设置了ip地址与子网掩码,网线也连接正常,但在“网上邻居”中别人就是看不到自己的电脑,估计多半是由于没有把本机的“Microsoft网络的文件和打印机共享”启用。 因为协议分为7层:应用层表示层会话层传输层网络层数据链路层物理层而这7层所使用的协议是不同的,所以你的问题基本是网络层的协议,而不是应用层的协议! 下述参考: 网络层协议:包括:IP协议、ICMP协议、ARP协议、RARP协议。 传输层协议:TCP协议、UDP协议。 ICMP是(Internet Control Message Protocol)Internet控制报文协议。它是TCP/IP协议族的一个子协议,用于在IP主机、路由器之间传递控制消息。控制消息是指网络通不通、主机是否可达、路由是否可用等网络本身的消息。这些控制消息虽然并不传输用户数据,但是对于用户数据的传递起着重要的作用。 IP是英文Internet Protocol(网络之间互连的协议)的缩写,中文简称为“网协”,也就是为计算机网络相互连接进行通信而设计的协议。在因特网中,它是能使连接到网上的所有计算机网络实现相互通信的一套规则,规定了计算机在因

基础知识103—网络协议和IP地址

基础知识103 网络协议和IP地址 【本课概要】 1.学习什么是网络协议、常见的计算机网络协议等基本概念; 2.了解TCP/IP协议簇的概况和重要性; 3.理解掌握MAC地址和IP地址的的概念和应用; 【课程内容】 一、 计算机网络协议 协议是一组规则的集合,是网络交互双方必须遵守的约定。协议具有层次性、可靠性和有效性。协议由语法、语义、同步(定时)三要素组成。 (图103-01) 协议(Protocol)是网络系统中最重要的概念,协议写在纸上,就是标准。实现在设备中,就是功能,学习网络,最后其实就是在学习各种协议。 1. 从计算机角度看 TCP/IP 协议族 IPX/SPX 协议族 Netbeui 协议 2. 从分层模型角度看 L1: EIA RS-232-C 接口和介质物理特性标准 电气特性标准 L2: CSMA/CD L3: IP ICMP ARP RARP L4: TCP UDP L5: HTTP FTP DNS DHCP TFTP POP3 SMTP ..... 3. 从交换路由管理角度看 STP/RSTP/MSTP RIP/OSPF CDP/VTP/GVRP HSRP/VRRP NTP .....

二、 常见的计算机网络协议 1.IPX/SPX协议 网际包交换协议/序列分组包交换协议。 由Novell公司制定,主要用在Netware网络操作系统上的网络协议。在我国,曾 经在上世纪的90年代,一统局域网领域,随着Novell公司放弃Netware产品,IPX/SPX 协议也逐渐在局域网(LAN)中消失。 BEUI协议 NetBios Enhanced User Interface(NetBios增强用户接口)。 它是NetBIOS协议的增强版本,是IBM公司开发的非路由协议。曾被许多微软公 司的操作系统采用,例如Windows for Workgroup、Win 9x系列、Windows NT等。 NetBEUI协议在许多情形下很有用,是Windows98之前的操作系统的缺省协议。总 之NetBEUI协议是一种短小精悍、通信效率高的广播型协议,安装后不需要进行设置, 特别适合于在小型网络中传送数据。 因为不支持路由,所以NetBEUI协议只能在单子网的小型网络中使用,也和Internet上的服务和协议不兼容,因此,NetBEUI协议也逐渐在局域网(LAN)中消失。 3.TCP/IP协议 传输控制协议/网际协议。它不只是这两个协议,而是一个协议家族(协议簇)。 是Internet最基本的协议、是因特网的基础。也是Unix、Linux、Windows系列(自 XP/2000之后的版本)众多操作系统的标准协议。 (图103-02)

TCP-IP协议抓包分析实验报告

TCP协议分析实验 学号: 姓名: 院系: 专业:

一.实验目的 学会使用Sniffer抓取ftp的数据报,截获ftp账号及密码,并分析TCP 头的结构、分析TCP的三次“握手”和四次“挥手”的过程,熟悉TCP 协议工作方式。 二.实验(软硬件以及网络)环境 利用VMware虚拟机建立网络环境,并用Serv-U FTP Server在计算机上建立FTP服务器,用虚拟机进行登录。 三.实验工具 sniffer嗅探器,VMware虚拟机,Serv-U FTP Server。 四.实验基本配置 Micrsoft Windows XP操作系统 五.实验步骤 1.建立网络环境。 用Serv-U FTP Server在计算机上建立一台FTP服务器,设置IP地址 为:,并在其上安装sniffer嗅探器。再并将虚拟机作为一台FTP客户 端,设置IP地址为:。设置完成后使用ping命令看是否连通。 2.登录FTP 运行sniffer嗅探器,并在虚拟机的“运行”中输入,点确定后出现 如下图的登录窗口: 在登录窗口中输入:用户名(hello),密码(123456)【在Serv-U FTP Server中已设定】,就登录FTP服务器了。再输入“bye”退出FTP 3.使用sniffer嗅探器抓包 再sniffer软件界面点击“stop and display”,选择“Decode”选 项,完成FTP命令操作过程数据包的捕获。 六.实验结果及分析 1.在sniffer嗅探器软件上点击Objects可看到下图:

再点击“DECODE(反解码)”按钮进行数据包再分析,我们一个一个的分析数据包,会得到登录用户名(hello)和密码(123456)。如下图: 2. TCP协议分析 三次握手: 发报文头——接受报文头回复——再发报文(握手)开始正式通信。

详解TCPIP协议的含义和参数

详解TCP/IP协议的含义和参数最重要的概念是IP地址,它是32位地址,采用如下的形式: nnn.nnn.nnn.nnn 其中每个nnn为8位,范围为0~255。通常互连网上的每台机器的地址都是唯一的。这相当于身份证号码,但这号码不易记忆,后来就出现了域名的概念,它与IP地址唯一对应,实际就是网络世界的门牌号码。如网事网络:域名: IP地址:210.77.43.3 域名的申请是有专门的管理机关负责的。常用的定级域名有行业与地区两种,以下为常见的域名: 地区: .cn中国; .hk香港; .uk英国; .tw台湾; .au澳大利亚; .jp日本; .ru俄罗斯; .fr法国 行业: .com公司;

.gov政府; .net网络; .edu教育; .mil军事; .org非赢利组织 TCP/IP协议中的三个参数 TCP/IP(TransmiteControlProtocol传输控制协议/InternetProtocol网际协议)已成为计算机网络的一套工业标准协议。Internet网之所以能将广阔范围内各种各样网络系统的计算机互联起来,主要是因为应用了“统一天下”的TCP/IP协议。在应用TCP/IP协议的网络环境中,为了唯一地确定一台主机的位置,必须为TCP/IP协议指定三个参数,即IP地址、子网掩码和网关地址。 IP地址 IP地址实际上是采用IP网间网层通过上层软件完成“统一”网络物理地址的技巧,这种技巧使用统一的地址格式,在统一管理下分配给主机。Internet 网上不同的主机有不同的IP地址,每个主机的IP地址都是由32比特,即4个字节组成的。为了便于用户阅读和理解,通常采用“点分十进制表示技巧”表示,每个字节为一部分,中间用点号分隔开来。如210.77.43.3就是网事网络WEB服务器的IP地址。每个IP地址又可分为两部分。网络号表示网络规模的大小,主机号表示网络中主机的地址编号。按照网络规模的大小,IP地址可以分为A、B、C、D、E五类,其中A、B、C类是三种主要的类型地址,D类专供多目传送用的多目地址,E类用于扩展备用地址。A、B、C三类IP地址有效范围如下表: 类别 网络号 主机号 A

TCPIP协议族中文版答案.

文件说明: (1)据最后一节课老师的讲解,学过的章节为1-9、13、14、15、19、22。必考章节为1-9、13、14、15、22,共十三个章节,其中4、5、6、7(checksum)、9、11(3个路由协议)章节为重点章节,具体考卷内容也许会与此有所出入。 (2)翻译之后的答案习题颜色深浅有所区别,参考之时希望注意,能力有限,个别题目没有做出中文解释,还望谅解,英文图的上方出现的Figure1.E2 Solution to Excercixe13字样,译为关于习题2的解决方法图1。 (3)此文件是所给英文答案所有习题的答案,但据整理英文答案发现,老师所给答案只有奇数题号的习题,然而整理人不确定老师是否只考所给答案的习题,还望分享一二。 (4)整理过程难免有误差,许多专业名词的翻译也会出现些许出入,望慎重参考此文件,如若有所疑问可自行在IEC群文件中下载相关英文版习题答案,进行进一步的学习并加深个人对题意的理解。 (5)如若明确文件中有错误出现,还望告知身边人,文件整理中尽量使得题意与答案处于同一页面中,如若带来不便,还请见谅,某些习题下方会有些许标注,还望注意到,以防理解出现偏差。 (6)此文件的最后会给大家一些老师提及的重点词汇、问题和整理过程中get到的一些专业名词,也许会对大家理解题意及英文版答案有所帮助。 (7)分享快乐,希望对大家有所帮助。

解:因D = T * V,D是传播距离,T是传播时间,V是传播速率,所以T=D/V,插入相应的值找寻需要的时间并在电缆中的传播。 T = D / V = (2500 m) / (200,000,000 m/s) = 0.0000125 s = 12.5 μs 【注】10base5,一种以太网标准,该标准用于使用粗同轴电缆、速度为10Mbps 的基带局域网络,在总线型网络中,最远传输距离为500米。1 * 10 -6 s= 1 μs 假设最小的帧大小为65字节或者520比特,L = T * R,L是帧的长度,T 是所用时间,R是数据率,因T=L/R,可以计算时间 T = L / R = (520 bits) / (10,000,000) bits/s = 0.000052 s = 52μs 【注】Mbps:传输速率是指设备的的数据交换能力,也叫"带宽",单位是Mbps(兆位/秒),目前主流的集线器带宽主要有10Mbps、54Mbps/100Mbps自适应型、100Mbps和150Mbps四种。1字节=8比特,也就是65字节=520比特, 填充需要46字节的数据部分,如果数据从上一层接收到的是42字节,则仍需要在这个数据上填充 46-42=4字节 (1)相同点:对媒体访问有同等的权利;都可以访问媒体。 (2)不同点:CSMA/CD:先听后发,边发边听,冲突停发,随即延迟后重发;可以引发碰撞。 CSMA/CA:它需要介质有一个特殊的时间量来通知其他站点;不会发生碰撞。

相关主题