第2讲 能量和动量观点在电磁学中的应用一、选择题(1~3题为单项选择题,4,5题为多项选择题)1.如图1所示,足够长的U 形光滑金属导轨平面与水平面成θ角(0<θ<90°)其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计。
金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( )图1A .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2v R sin θ解析 分析金属棒的受力情况,有mg sin θ-B 2L 2v R =ma ,可得金属棒做加速度减小的加速运动,故其平均速度不等于初、末速度的平均值,A 错;设金属棒沿斜面下滑的位移为s ,则电荷量q =I ·Δt =ΔΦΔt ·1R ·Δt =ΔΦR =BsL R ,解得s =qR BL ,B 正确;根据能量守恒定律知产生的焦耳热等于金属棒机械能的减少量,Q =mgs sin θ-12m v 2,C 错;金属棒速度越大,安培力越大,所以金属棒受到的最大安培力为B 2L 2v R ,D 错。
答案 B2. (2016·怀化一模)如图2所示,一带正电小球穿在一根绝缘粗糙直杆上,杆与水平方向夹角为θ,整个空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,先给小球一初速度,使小球沿杆向下运动,在A点时的动能为100 J,在C 点时动能减为零,D为AC的中点,那么带电小球在运动过程中()图2A.到达C点后小球不可能沿杆向上运动B.小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等C.小球在D点时的动能为50 JD.小球电势能的增加量等于重力势能的减少量解析如果电场力大于重力,则静止后小球可能沿杆向上运动,故A错误;小球受重力、电场力、洛伦兹力、弹力和滑动摩擦力,由于F=q v B,故洛伦兹洛力减小,导致支持力和滑动摩擦力变化,故小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,故B正确;由于小球在AD段克服摩擦力做的功与在DC段克服摩擦力做的功不等,故小球在D点时的动能也就不一定为50 J,故C错误;该过程是小球的重力势能、电势能、动能和系统的内能之和守恒,故小球电势能的增加量不等于重力势能的减少量,故D错误。
答案 B3.(2016·泰安二模)如图3所示,竖直向上的匀强电场中,一竖直绝缘轻弹簧的下端固定在地面上,上端连接一带正电小球,小球静止时位于N点,弹簧恰好处于原长状态。
保持小球的带电量不变,现将小球提高到M点由静止释放,则释放后小球从M运动到N的过程中()图3A.小球的机械能与弹簧的弹性势能之和保持不变B.小球重力势能的减少量等于小球电势能的增加量C.弹簧弹性势能的减少量等于小球动能的增加量D.小球动能的增加量等于电场力和重力做功的代数和解析由于有电场力做功,故小球的机械能不守恒,小球的机械能与弹簧的弹性势能之和是改变的,故A错误;由题意,小球受到的电场力等于重力。
在小球运动的过程中,电场力做功等于重力做功,小球从M运动到N的过程中,重力势能减少,转化为电势能和动能,故B错误;释放后小球从M运动到N的过程中,弹性势能并没变,一直是0,故C错误;由动能定理可得重力和电场力做功,小球动能增加,小球动能的增加量等于电场力和重力做功的代数和,故D 正确。
答案 D4.如图4所示,光滑绝缘的水平面上M、N两点各放有一带电荷量分别为+q和+2q的完全相同的金属球A和B,给A和B以大小相等的初动能E0(此时初动量的大小均为p0),使其相向运动刚好能发生碰撞(碰撞过程中无机械能损失),碰后返回M、N两点的动能分别为E1和E2,动量的大小分别为p1和p2,则()图4A.E1=E2>E0,p1=p2>p0B.E1=E2=E0,p1=p2=p0C.碰撞发生在MN中点的左侧D.两球同时返回M、N两点解析金属球A和B发生碰撞时,电荷量会平均分配,则作用力变大。
经历相同的位移,做功增多,所以有E1=E2>E0。
又p=2mE k,可得p1=p2>p0。
因两球质量相同,受力相同,故加速度相同,两球同时返回M,N两点。
选项A、D 正确。
答案AD5.如图5所示,倾角为θ的光滑斜面固定在水平面上,水平虚线L下方有垂直于斜面向下的匀强磁场,磁感应强度为B。
正方形闭合金属线框边长为h,质量为m,电阻为R,放置于L上方一定距离处,保持线框底边ab与L平行并由静止释放,当ab 边到达L 时,线框速度为v 0,ab 边到达L 下方距离为d (d >h )处时,线框速度也为v 0。
以下说法正确的是( )图5A .ab 边刚进入磁场时,电流方向为a →bB .ab 边刚进入磁场时,线框加速度沿斜面向下C .线框进入磁场过程中的最小速度小于mgR sin θB 2h 2D .线框进入磁场过程中产生的热量为mgd sin θ解析 由右手定则可判断ab 刚进入磁场过程电流方向由a →b ,选项A 正确;线框全部在磁场中运动时为匀加速运动,ab 边由L 处到L 下方距离为d 处速度增量为零,所以ab 边刚进入磁场时做减速运动,线框加速度沿斜面向上,选项B 错误;线框恰好完全进入磁场时的速度最小,此时由牛顿第二定律得F 安-mg sin θ=ma ≥0,而安培力F 安=BhI =Bh ·Bh v min R =B 2h 2v min R,联立解得v min ≥mgR sin θB 2h 2,选项C 错误;根据动能定理,ab 边由L 处到L 下方距离为d 处过程中,mgd sin θ-Q =ΔE k =0,线框进入磁场过程中产生的热量Q =mgd sin θ,选项D 正确。
答案 AD二、非选择题6.(2016·四川理综,9)中国科学家2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。
加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。
如图6所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移管)组成,相邻漂移管分别接在高频脉冲电源的两极。
质子从K 点沿轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运动,在漂移管间被电场加速,加速电压视为不变。
设质子进入漂移管B 时速度为8×106m/s ,进入漂移管E 时速度为1×107 m/s ,电源频率为1×107 Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周期的1/2,质子的荷质比取1×108 C/kg 。
求:图6(1)漂移管B 的长度;(2)相邻漂移管间的加速电压。
解析 (1)设质子进入漂移管B 的速度为v B ,电源频率、周期分别为f 、T ,漂移管B 的长度为L ,则T =1f ①L =v B ·T 2②联立①②式并代入数据得L =0.4 m ③(2)设质子进入漂移管E 的速度为v E ,相邻漂移管间的加速电压为U ,电场对质子所做的功为W ,质子从漂移管B 运动到E 电场做功W ′,质子的电荷量为q 、质量为m ,则W =qU ④W ′=3W ⑤W ′=12m v 2E -12m v 2B ⑥联立④⑤⑥式并代入数据得U =6×104 V ⑦答案 (1)0.4 m (2)6×104 V7.如图7,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小E =5.0×103V/m 。
一不带电的绝缘小球甲,以速度v 0沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞。
已知甲、乙两球的质量均为m =1.0×10-2kg ,乙所带电荷量q =2.0×10-5C ,g 取10 m/s 2。
(水平轨道足够长,甲、乙两球可视为质点,整个运动过程无电荷转移)图7(1)甲乙两球碰撞后,乙恰能通过轨道的最高点D,求乙在轨道上的首次落点到B 点的距离;(2)在满足(1)的条件下,求甲的速度v0。
解析(1)在乙恰好能通过轨道的最高点的情况下,设乙到达最高点的速度为v D,乙离开D点达到水平轨道的时间为t,乙的落点到B点的距离为x,则mg+qE=m v2D R①2R=12(mg+qEm)t2②x=v D t③联立①②③得:x=0.4 m④(2)设碰撞后甲、乙的速度分别为v甲、v乙,根据动量守恒定律和机械能守恒定律有:m v0=m v甲+m v乙⑤12m v 2=12m v2甲+12m v2乙⑥联立⑤⑥得:v乙=v0,v甲=0⑦由动能定理得:-mg·2R-qE·2R=12m v2D-12m v2乙⑧联立①⑦⑧得:v0=5(mg+qE)Rm=2 5 m/s⑨答案(1)0.4 m(2)2 5 m/s8.将一斜面固定在水平面上,斜面的倾角为θ=30°,其上表面绝缘且斜面的顶端固定一挡板,在斜面上加一垂直斜面向上的匀强磁场,磁场区域的宽度为H=0.4 m,如图8甲所示,磁场边界与挡板平行,且上边界到斜面顶端的距离为x =0.55 m。
将一通电导线围成的矩形导线框abcd置于斜面的底端,已知导线框的质量为m=0.1 kg、导线框的电阻为R=0.25 Ω、ab的长度为L=0.5 m。
从t=0时刻开始在导线框上加一恒定的拉力F ,拉力的方向平行于斜面向上,使导线框由静止开始运动,当导线框的下边与磁场的上边界重合时,将恒力F 撤走,最终导线框与斜面顶端的挡板发生碰撞,碰后导线框以等大的速度反弹,导线框沿斜面向下运动。
已知导线框向上运动的v -t 图象如图乙所示,导线框与斜面间的动摩擦因数为μ=33,整个运动过程中导线框没有发生转动,且始终没有离开斜面,g =10 m/s 2。
图8(1)求在导线框上施加的恒力F 以及磁感应强度的大小;(2)若导线框沿斜面向下运动通过磁场时,其速度v 与位移s 的关系为v =v 0-B 2L 2mR s ,其中v 0是导线框ab 边刚进入磁场时的速度大小,s 为导线框ab 边进入磁场区域后对磁场上边界的位移大小,求整个过程中导线框中产生的热量Q 。
解析 (1)由v -t 图象可知,在0~0.4 s 时间内导线框做匀加速直线运动,进入磁场时的速度为v 1=2.0 m/s ,所以在此过程中的加速度a =Δv Δt =5.0 m/s 2由牛顿第二定律有F -mg sin θ-μmg cos θ=ma解得F =1.5 N由v -t 图象可知,导线框进入磁场区域后以速度v 1做匀速直线运动通过导线框的电流I =E R =BL v 1R导线框所受安培力F 安=BIL对于导线框匀速运动的过程,由力的平衡条件有F =mg sin θ+μmg cos θ+B 2L 2v 1R解得B =0.50 T 。