飞行原理(升力和阻力)
• John Gay拍摄
1999年7月7日
• F/A 18-C Hornet 在- 航母附近低高度(75英尺)超音速飞行的场面
-
正激波和斜激波
Ma=1 Ma>1
正激波 钝头:正激波 尖头:斜激波
-
正激波的波阻大, 空气被压缩很厉害, 激波后的空气压强、 温度和密度急剧上 升,气流通过时, 空气微团受到的阻 滞强烈,速度大大 降低,动能消耗很 大,这表明产生的 波阻很大。
翼型的下表面→流管变化不大→压强基本不变 上下表面产生了压强差→总空气动力R R的方向向后- 向上→分力:升力L、阻力D
不同迎角对应的压力分布
-
失速
通常,机翼的升力与迎角成正比。迎角增加,升力随之 增大(图1、图2)。但是,当迎角增大到某一值时,则会 出现相反的情况,即迎角增加升力反而急剧下降。这个 迎角就称为临界迎角。
等音速点后面,由于翼型表面 的连续外凸,流管扩张,空气 膨胀加速,出现局部超音速区。
通常机翼上表面会首先达到当地音速, 局部激波首先出现在上翼面。随着速度 的增加,下翼面也会出现局部激波,而 且当速度进一步增加时,机翼上下表面 的局部激波还会向后移动,并且下翼面 的局部激波的移动速度比上翼面的大, 可能一直移到机翼后缘,同时激波的强 度也将增大,激波阻- 力将增大。
简单襟翼
-
富勒襟翼
-
Boeing 727 三缝襟翼
Boeing 727 Triple-Slotted Fowler Flap System -
F-14全翼展的前缘缝翼与后缘襟翼
-
前缘缝翼
-
缝翼和襟翼对升力系数的影响
-
阻力
• 摩擦阻力 • 压差阻力 • 干扰阻力
•诱导阻力 •激波阻力
-
阻力1:摩擦阻力
斜激波波阻较小, 倾斜的越厉害,波 阻就越小。
临界马赫数
上翼面流管收缩局部流速加快,大于远 前方来流速度
局部流速的加快 局部温度降低 局部音 速下降
当翼型上最大速度点的速度增加到等于当地 音速时,远前方来流速度v∞就叫做此翼型 的临界速度(对应临界马赫数)
-
局部激波
当M∞>Mcr以后,在翼型上表面
-
阻力4:干扰阻力
气流流过翼-身连接处,由于部件形状的关系, 形成了一个气流的通道。B处高压区形成气流 阻塞,使气流开始分离,产生旋涡,能量消耗
和飞机不同部- 件之间的相对位置有关
阻力5:激波阻力
属于压差阻力
-
激波
飞机飞行 -> 对空气产生扰动 扰动(以扰动波的形式)以音速传播,积聚
激波形成原理
阻力
总结一下:飞机所受的阻力可以分为
摩擦阻力 压差阻力 诱导阻力 干扰阻力 激波阻力
-
飞机的俯仰、滚转和转弯
Pitch– elevators in motion
-
飞机的俯仰、滚转和转弯
Roll– Ailerons in motion
-
飞机的俯仰、滚转和转弯
Yaw—Rudder in motion
附面层
由空气的粘性造成 附面层 ( 层流附面层 紊流附面层 ) 层流流动,摩擦阻力小;紊流流动,摩擦阻力大的多
-> 尽量使物体表面的流动保持层流状态
-
阻力2:压差阻力
运动着的物体前后所形成的压强差所产生的 同物体的迎风面积、形状和在气流中的位置都
有很大的关系 -
迎面阻力
• 摩擦阻力和压差阻力合起来叫做“迎面阻 力”一个物体究竟哪种阻力占主要部分, 主要取决于物体的形状
-
升力特性曲线
-
Cy-α曲线的特点
Cy=0 的迎角(用α0表示)一般为负值(0º~4º); Cy-α 曲线在一个较大的范围内是直线段; Cy有一个最大值Cy max,而在接近最大值Cy max
前曲线上升的趋势就已减缓。
-
弯度和迎角的作用
-
改变后缘弯度的作用
-
增升装置
襟翼(前、后缘)
-
作用在飞机上的空气动力
• 升力 — 更大的重量 • 阻力 — 更大发动机功率
ห้องสมุดไป่ตู้
-
问题:如何增大升力、减小阻力
迎角
Angle of Attack (AoA)
相对气流方向与翼弦之间的夹角
不同于飞机的姿态
-
升力
气流→翼型→上表面流线变密→流管变细 下表面平坦→流线变化不大(与远前方流线相比)
连续性定理、伯努利定理→翼型的上表面→流管变细→流管截面积 减小→气流速度增大→故压强减小
• 流线体,迎面阻力中主要是摩擦阻力 • 远离流线体的式样,压差阻力占主要部分,
摩擦阻力则居次要位置,且总的迎面阻力 也较大
-
机翼的三元效应
上翼面压强低,下翼面压强高 -> 压差 -> 漩涡 -> 下洗 -
阻力3:诱导阻力
伴随升力而产生的
翼尖涡使流过机翼的气流向下偏转一个角度 (下洗)。升力与气流方向垂直(向后倾 斜),产生了向后的分力(阻力) 诱导阻力同机翼的平面形状,翼剖面形状, 展弦比,特别是同升力有关。
-
激波照片(M=3)
飞行速度小于音速时
扰动波的传播速度大于飞机前进速度 传播向四面八方
飞行速度等于或超过音速时
扰动波的传播速度等于或小于飞机前进速度 后续时间的扰动就会同已有的扰动波叠加在 一起形成较强的波, 空气受到强烈的压缩、而形成了激波
-
波阻
能量的观点
空气通过激波时,受到薄薄一 层稠密空气的阻滞,使得气流速 度急骤降低,由阻滞产生的热量 来不及散布,于是加热了空气。 加热所需的能量由消耗的动能而 来。在这里,能量发生了转化-由动能变为热能。动能的消耗表 示产生了一种特别的阻力。这一 阻力由于随激波的形成而来,所 以就叫做"波阻"
-
激波前后气流物理参数的变 化
机翼上压强分布的观点
亚音速,最大稀薄度靠前,压强分布沿着与飞行相反的方 向上的合力,不是很大,即阻力不是很大。
超音速情况下,最大稀薄度向后远远地移动到尾部,而且 向后倾斜得很厉害,同时它的绝对值也有增加。因此,如 果再考虑机翼头部压强的升高,那么压强分布沿与飞行相 反方向的合力,急剧增大,使得整个机翼的总阻力相应有 很大的增加。这附- 加部分的阻力就是波阻。
当机翼迎角超过临界点时,流经上翼面的气流会出现严 重分离,形成大量涡流,升力大幅下降,阻力急剧增加。 飞机减速并抖动,各操纵面传到杆、舵上的外力变轻, 随后飞机下坠- ,机头下俯,这种现象称为失速。
视频演示
流线
风洞
-
失速
空气动力系数
升力系数 Cy ( CL ) 阻力系数 Cx ( CD )