附录英文原文Industrial Robot and its system’s componentsThere are a variety of definitions of the term robot. Depending on the definition used, the number of robot installations worldwide varies widely. Numerous single purpose muchines are used in manufacturing plants that might appear to be robots. These machines are hardwired to perform a single function and can not be reprogrammed to perform a different function. Such single-purpose machines do not fit the definition for industrial robots that is becoming widely accepted. This definition was developed by the robot Institute ofAmerica:A robot is a reprogrammable muhifunctional manipulator designed to move material, parts, tools, or specialized devices through variable progranmled motions for the perfommnce of a variety of tasks.Note that this definition cxmtalns the words reprograrnmable and multifunctional. It is these two characteristics that separate the true industrial robot from the various single-purpose machines used in modern manufacturing firms. The term"reprogrammable"implies two things:The robot operates aec~)rding to a written program, and this program can be rewritten to acconlmodatc a variety of manufacturing tasks.The term"multifunctional"means that the robot can, through reprogramming and the use of different cnd-effectors, perform a number of different manufacturing tasks. Definitions written around these two critical characteristics are becoming the accepted definitions among manufacturing professionals.The fimt articulated arm came about in 1951 and was used by the U.S. Atomic Energy Commission. In 1954, the first programmable robot was designed by George Devol. It was based on two important technologies:(1) Numerical control (NC) technology.(2) Remote manipulation technology.Numerical control technology provided a foma of machine control ideally suited to robots.It allowed for the control of motion by stored programs. These programs contain data points to which the robot sequentially moves, timing signals to initiate action and to stop movement, and logic statements to allow for decision rfmking.Remote manipulation technology allowed a machine to be more than just another NC machine. It allowed such machines to become robots that can perfoml a variety of manufactuing tasks in both inaccessible an unsafe environmonts. By mering these two technologies, Devol developed the first industrial robot, an unsophistieated programmable materials handling machine.The first conunercially produced robot was developed in 1959. In 1962, the first industrial robot to be used oil a production llne was installed by General Motors Corporation. This robot was produced by Unimation. A major step forward in robot control occurred in 1973 with the development of the T-3 industrial robot by Cincinnati Milaeron. The T-3 robot was the first commercially producedindustrial robot controlled by a minicomputer.Numerical control and remote manipulation technology prompted the wide scale development and use of industrial robots. But major technological developments do not take place simply because of such new capabilities. Something must provide the impetus for taking advantage of these capabilities. In the case of industrial robots, the impetus was economies.The rapid inflation of wages experienced in the 1970s tremendously increased the personnel costs of manufacturing firms. At the same time, foreign competition became a serious problem for U. S. manufacturers. Foreign manufacturers who had under taken automation on a wide scale basis, such as those in Japan, began to gain an increasingly large share of the U.S. and world market for manufactured goods, particularly automobiles.Through a variety of automation techniques, includicg robots, Japanese manufacturers, beginning in the 1970s, were able to produce better automobiles more cheaply than nonautomated U.S. manufacturers. Consequently, in order to survive, U.S. manufacturers were forced to consider any technological developments that could help improve productivity.It became imperative to produce better produets at lower costs in order to be competitive with foreign manufacturers. Other factors such as the need to find better ways of performing dangerous marmfacturing tasks contributed to the development of industrial robots. However, the principal rationale has always been,and is still, improved productivity.One of the principal advantages of robots is that they can be used in settings that are dangerous to humans. Welding and parting are examples of applications where rotmts can be dangerous to humans. Even though robots are closely asmciated with safety in the workplace, they can, in themselves, be dangerous.Robots and robot cells must be carefully designed and configured so that they do not endanger human workers and other machines. Robot work envelops should be accurately calculated and a danger zone surroundting the envelop clearly marked off. Red flooring strips and barriers can be userd to keep human workers out of a robot’s work envelope.Eren with such precautions it is still a good idea to have an automatic shutdown system in situations where robots are used. Such a system should should have the capacity to sense the need for an automatic shutdown of operations. Fault-tolerant computers and redunant systems can be installed to ensure proper shutdown of robotics systems to ensure a safe environment.Industrial robots is the science of designing, building, and applying industrial robcts. What are robots? In the late 1970s the Robotic Industries Association defined a robot as” a manipulator, designed to move material, parts,tools or specialized devices through variable programmed motions for the performance of a variety of tasks". Although this definition does not directly include pick and place arms as robots, teleoperamrs and remotely controlled devicesare often referred to also as robots. The International Standards Organization(ISO) has a more lengthy definition of an industrial robot:A machine formed by a mechanism including several degrees of freedom, often having tile appearanoa of one or several arms ending in a wrist capable of holding a tool or a workpiece or an inspection device. In particular, its control unit must use a memorizing device and .sometimes it can use sensing or adaptation appliances taking into account environment and circumstances. These multipurtpose machines are generally designed to carry out a repetitive function and can be adapted to other functions.The RIA and ISO definitions both stress the muLtifunctional and programmable capabilities and, therefore, exclude special-purpose "hard automation" tools and equipment typically found in high volume production. Also excluded are manual remote manipulators, which are extensions of human hands for use in, for example, sterile, hot, or radioactive environments.In Japan, the Japanese Industrial Robot Association (JIRA) classifies industrial robots by the method of input informatkm and the method of teaching:1. Manual Manipulators. Manipulators directly activated by the operator.2. Fixed-sequence Robot. Robot that once programmed for a given sequence of operations is not easily changed.3. Variable-sequence Robot. Robot that can be programmed for a given sequence of operations and can easily be changed or reprogrammed.4. Playback Robot. Robot that "memorizes" work sequences taught by a human being who physically leads the device through the intended work pattern; the robot can then create this sequence repetitively from memory.5. Numerically Controlled (NC) Robot. Robot that operatas from and is controlled by digital data, as in the form of punched tape, cards, or digital switches; operates like a NC machine.6. Intelligent Robot. Robot that uses sensory perception to evaluate its environment andcmake decisions and proceeds to operate accordingly.The first-generation of robot systems was defined for the various robots with limited computer power. Their main intelligant functions include programming by showing a sequence of manipulation steps by a human operator using a teach box. Without any sensors, these robots require a prearranged and relatively fixed factory environment and, therefore, have limited use.The second-generation of robot systems was enhanced by the addition of a computer processor. A major step in industrial robotics development was the integration of a computer with the industrial robot mechanism. This has provided real-time calculation of trajectory to smooth the motions of the end effector and integration of mine simple force and proximity sensors to obtain external signals.The main applications of second generation robots include spot and arc welding, spray painting, and some assembly.Third-generation robot systems incorporate multiple eomputer processors and multiple arms that can operate asynchronously to perform .several functions. Distributed hierarchical mmputer organization is preferred, because it can coordinate motions and interface with external sensors, other machines, and other robots and can communicate with other computers. These robots can already exhibitintelligent behavior, including knowledge-based control and learning abilities.Japan ranks as the world's top robot-producing and robot-using country, with more than 40% of the world's industrial robot installations. The reasons for this penetration are sociological-and technological factors that are unique to Japan: industrial robots brought productivity and quality gains in Japanese industry, coupled with improvements of the work enviromnent. These have perpetuated the social-demand for more robots as well as increased the expectation from this technology.Current and emerging robot applications in industry can be categorized on the complexity and requirements of the job. They range from simple, low technolngy pick-and place operations through medium technology painting, some assembly and welding operations to high technology precision assembly and inspection operations.Pick-and-place Operations The earliest applications of robots were in machine loading unloading, pick-and-place, and material transfer operations. Such robots typically were not servo controlled and worked with pneumatic or hydraulic power. The Icxad-carrying requirements were high, working in dirty or hazardous factory environments. Replacing unskilled human labor often in hazardous jobs, these robots had to be robust and low in initial and maintenance costs.Painting and Welding Operations The next level in the sophistimtion of industrial robot applications was in spray painting, and spot and arc welding. These applications complemented or replaced certain skilled human labor. Often the justification was by eliminating dangerous environmental exposures. These applications often require tracking complex trajectories such as painting surface mntours, hence mrvo controlled "articulated or spherical robot structures were used.Lead-through teaching modes became commom, and sometimes sophisticated sensors are employed to maintain process consistency. Experience has shown that when properly selected and implemented, thase robotic applications usually lead to reduced overall manufacturing costs and improved product quality compared with manual method.Assembly Operations The most advanced level of technology employing third-generation industrial robots is found in assembly. System repeatability is of utmost importance. End-of-arm tooling must be compliant, i.e., have both force and displacement control to adjust part insertions, which require that the robot actually "feel" its way along. This technology usually requires a measure of artificial intelligence. Assembly robots generally are electronically driven and operate in clean enviromnents. Assembly robots are expected to exceed further technology applications.Other Applications Other typical applications of robots include inspection, quality control, and repair; processing such as laser and water jet cutting and drilling, riveting, and clean room operations; and applications in the wood, paper, and food-processing industries. As industrial robot technology and robot intelligence improve even further, additional applications may be justified effectively.The components of a robot system could be discussed either from a physical point of view or from a systems point of view. Physically, we would divide the system into the robot, power system, and controller (computer). Likewise, the robot itself could be partitioned anthropomorphically into base, shoulder, elbow, wrist, gripper, and tool. Most of these terms require little explanation.Consequently, we will describe the components of a robot system from the point of view of information transfer. That is, what infomtation or signal enters the component; what logical or arithmetic operation does the component perform; and what information or signal does the component produce? It is important to note that the same physical component may perform many different information proees.sirkg operations (e. g. , a central computerperforms many different calculations on different data). Likewise, two physically separate components may perform identical information operations ( e. g., the shoulder and elbow actuators both convert signals to motion in very similar ways).Actuator Asmciated with each joint on the robot is an actuator which causes that joint to move. Typical actuators are electric motors and hydraulic cylinders. Typically, a robot system will contain six actuators, since six are required for full control of position and orientation. Many robot applications do not require this full flexibility, and consequently, robots are often built with five or fewer actuators.Sensor To control an actuator, the computer must have infommtion regarding the position and possibly the velocity of the actuator. In this context, the term position refers to a displacement from some arbitrary zero reference point for that actuator. For example, in the case of a rotary actuator , "position" would really the angular position and be measured in radians.Many types of sensors can provide indications of position and velocity. The various types of sensors require different mechanisms for interfacing to the computer. In addition, the industrial use of the manipulator requires that the interface be protected from the harsh electrical environment of the factory. Sources of electrical noise such as arc welders and large motors can easily makena digital system useless unless care is taken in design and construction of the interface.Computation We could easily have labeled the computation module "computer,"as most of the Functions to be described are typically perfommd by digital computers. However, many of the Functions may be performed in dedicated custom hardware or networks of computers We will, thus, discuss the commputational component as if it were a simple computer, recognizing that tile need for real-time control may require special equipment and that some of this equipment may even be analog, although the current trend is toward fully digital systems.One further note: We will tend to avoid the use of the term microprocessor in this book and simply say computer, although many current robot manufacturers use one or more microprocessors in their systems.The computation component performs the following operations: Servo Given the current position and/or velocity of an actuator, determine the appropriate drivesignal to move that actuator toward its desired position. "This operation must be performed for eaeh actuator. Kinematics Given the current statel of the actuators (position and velocity ),determine the current state of the gripper. Conversely, given a desired state of the hand, determine the desired state for each actuator.Dynamics Given knowledge of the loads on the arm (inertia, friction, gravity, acceleration), use this information to adjust the sorvo operation to achieve better performance.Workplace Sensor Analysis Given knowledge of the task to be performed, determine appropriate robot motion commands. This nmy include analyzing a TV picture of the workplace or measuring and compensating for forces applied at the hand.In addition to these easily identified co. mponents, there are also supervisory operations such as path planning and operator interaction.中文翻译工业机器人及其系统组成有许多关于机器人这个术语的定义。