当前位置:文档之家› 统计热力学

统计热力学

⎝ ∂V ⎠T ,N
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+
NkTV ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )

q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
⎤ ⎥ ⎦
3.3 思 考 题
1.Stirling 公式 的适用条件是什么?
N!≈ ⎜⎛ N ⎟⎞N ⎝e⎠
2.对于由少数(例如 20 个)离域子构成的系统,我们能否用公式
∑∏ Ω =
g ni i
i ni!
计算其微观状态数?若不能用此式计算,请说应如何计算Ω。
3.什么是最可几分布?最可几分布的各能级分布数如何计算?
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+
NkTV ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
+U0
(6)G = −kT ln qN + NkTV ⎜⎛ ∂ ln q ⎟⎞
N!
⎝ ∂V ⎠T ,N
=
−kT
ln
q'N N!
+
NkTV
⎜⎛ ⎝
A 是 B01tzmann 常数,它与摩尔气体常数及有关
k = R / L = 1.3806 ×10−23 J • K −1
是=只/人=l。3806×10—23J.K—1
此处 L 是 Avogadro 常数。
ni∗ = gi exp(− εi / kT )
N
q
5. 此式称为Bo1tzmann分布定律。式中ni∗代表在最可几分布时具有能量εi的分子数,N是系统 中的分子总数,gi是能级εi上的简并度,q是分子配分函数,其定义为
∆εt < ∆ε r < ∆εV < ∆εe < ∆ε n
一般 ∆ ε和t 分∆别ε为r
和10−19 k,T能级差1很0−小2 k,T分子较容易实现从低能级向高能级的跃迁,因
此可将平动和转动近似当作能量连续变化的情况来处理。而 约为 , 约为 , ∆ε值V 更
大1,0所kT以处理振∆动εe、电子1运0动2 k和T 核运∆动ε n时,必须考虑能量变化的不连续性。能量较高的分子可
的数目称简并度,它是各能级本身的性质。一般说来,各个能级都有很大的简并度;一个宏观上
处于平衡状态的系统,在微观上却是瞬息万变的:分子除在不同的能级间不停地跃迁外,还在
同一能级上的不同量子态间不断地变化着。所以,处理由 以上个分子构成的1系0统20 ,必须用统
计平均的方法;相邻能级间的能量差称为能级间隔,各运动的能级间隔具有如下关系:
Avogadro常数。 15.
Sr,m
=
R⎜⎜⎝⎛ ln
8π 2IkT σh2
+ 1⎟⎟⎠⎞
式中Sr,m为双原子分子理想气体的摩尔转动熵,I和σ分别为分子的转动惯量和对称数。
[ ] 式中16S.V,m为双原子分子理想气SV体,m的=摩R尔⎢⎣⎡ e振xp动(θθ熵VV ,//TT久)为−1分−子ln的1振−动ex特p(征−温θV度/ T。)
N!
⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
N!
=
−kT
ln
q'N N!
+U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂V ⎠T ,N
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
θV = hν / k 所以氏只取决于分子本身,一般分子的氏值数量级为 103 K
12.
q’e=ge,0
式中q’e为电子运动配分函数(选εe,0=0),ge,0为电子运动的基态简并度。除O2及NO等少数分子以
外,大多数分子的队ge,0=1,即电子运动的基态是非简并的,因而它们的q’e=1。
13.
q’n=ln q' ⎟⎞ ∂T ⎠V ,N
+U0
(2)S = k ln qN + NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
= k ln q'N +NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
= −kT ln q'N +U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
S = St + Sr + SV + Se + Sn
在利用此关系进行具体计算时,只需计算St,Sr和Sv即可。
3.2 主要公式
1.
( ) εt
=
h2 8mV 2/3
nx2
+
n
2 y
+
nz2
式中εt为分子的平动能,V为分子可以平动的空间体积,m为分子质量,A为P1anck常数
( h = 6.6262)×,1n0x−,34nJy,• 和s nz为平动量子数,它们均可以取任意正整数。可以看出,平动能级
4.请说明配分函数的定义和物理意义。
5 q 和 q’的区别是什么?它们关系如何?
6.在相同的条件下,定域子系的微观状态数
∏ Ω定 = N!Σ i
式中认为核运动配分函数(εn,0=0),gn,o为核运动的基态简并度。因为在一般物理化学过程中,
不涉及原子核状态的变化,所以在计算热力学量时可略去核运动。
14.
St,m
=
R
⎪⎨⎧ln ⎪⎩
⎡ ⎢ ⎣
(2πmkT
Lh3
)3
2
Vm
⎤ ⎥ ⎦
+
5 ⎪⎫
2
⎬ ⎪⎭
此式称为Sacker—Tetrode方程。其中St,m为理想气体的摩尔平动熵,Vm为摩尔体积,L为
增加。因此从本质上讲,影响微观状态数的因素就是影响熵的因素:①分子数越多,熵值越
大。例如,分解反应导致久值增加,这是由于分子数增加,使得Ω值增大,于是S值增大。②分
子占用的能级越多,S值越大。例如,当温度升高时,许多分子由于吸收能量而向较高能级跃
迁,即分子占用的能级数增多,因而Ω值增大,S值增加。当体积增大(膨胀)时,使得平动能级
间隔变小,平动能级变得密集,于是分子占据的能级数增多,结果Ω值增大,S值增加。③能级
的简并度越大,S值越大。例如,在一定温度和压力下,对同一种物质而言,液体的熵大于固体
的熵,气体的熵大于液体的熵,即Sm(g)>Sm(1)>Sm(s)。这是由于液体分子比固体增加了转动 运动,而气体分子又比液体分子增加了平动运动。分子运动形式越多,各能级的简并度越大,
∂ ln q' ∂V
⎟⎞ ⎠T ,N
+U0
这一组公式中的q’和U0的意义与第 7 组公式相同。
8.
q = qt qr qV qeqn

q' = qt qr q'V q'e q'n
此式称为配分函数的析因子性质,其中qt,qr,qv,qe和qn分别为平动配分函数、转动配分函
数、振动配分函数、电子运动配分函数和核运动配分函数。
Ω就越大,使得S值越大。
3。Bo1tzmann 统计及其宏观约束条件
Bo1tzmann 统计属于平衡统计,它以等几率假设为基础,用最可几分布代表平衡状态。
Bo1tzmann 分布定律指出,在最可几分布时,任一能级上的分子在总分子数中所占的比例等于
该能级上的有效量子态在总有效量子态中所占的比例。该定律的导出,是基于系统的 U,V 和
q = q'exp(− ε0 / kT )
(3)对状态函数产生影响。零点能的不同选择对 U 产生影响,而对 S 和 p 无任何影响。由于
H,A 和 G 的定义均与 U 有关,所以它们必受零点能选择的影响。
6.统计熵
在统计热力学中,由配分函数计算出的系统的熵称为统计熵。分子各种运动均对熵有独立
的贡献。它们分别叫做平动熵、转动熵、振动熵、电子熵和核熵。记作
择性,零点能的选择将产生如下影响:
(1)对各能级的能量标度产生影响。若基态能量为ε0(ε0≠o)时任一能级的标度为εi,当将基态能
量定为ε0’=0 时,上述能级的标度为εi’,则
ε
' i
=
εi
−ε0
(2)对配分函数产生影响。能量标度的改变造成各能级的 Boltzmann 因子的改变,从而导致配
分函数值的变化。若(1)中两种选择时的配分函数分别为 q 和 q’,则
9
qt
=
(2πmkT )3
h2
2
V
此式表明,平动配分函数与体积有关。当T和V固定时,qt取决于分子质量m。
10.
相关主题