当前位置:文档之家› 摩擦学基础知识-磨损

摩擦学基础知识-磨损

(4) 消耗材料, 造成机械材料的大面积报废。
1.3
研究内容:
(1) 磨损类型及发生条件、特征和变化规律。 (2) 影响磨损各种因素,包括材料、表面形
态、 环境、滑动速度、载荷、温度等。
(3) 磨损的物理模型、计算及改善措施。 (4) 磨损的测试技术与实验分析方法。
1.4
磨损过程的一般规律:
1.磨损过程曲线:典型磨损曲线通常由三种不同 的磨损变化阶段组成。
** 实际上,只有相同的金属材料组成摩擦副时,才
能按硬度估计粘着磨损,合金或不同材料的摩擦副,
硬度不能反映粘着系数、粘着磨损或粘着引起的咬
死等情况。
5 粘着磨损的影响因素
(1)摩擦副材料:
a:材料性能:脆性材料比塑性材料的抗粘着能力高。
**塑性材料粘着结点的破坏以塑性流动为主,发生 在表层深处,磨损颗粒大。 **脆性材料粘着结点的破坏主要剥落,损伤深度较 浅,磨损颗粒较小,容易脱落,不堆积于表面。 **根据强度理论:脆性材料的破坏由正应力引起, 塑性材料的破坏决定于切应力。表面接触中的最 大正应力作用在表面,最大切应力离表面有一定 深度,所以材料塑性越高,粘着磨损越严重。
1.2 磨损的危害: (1) 影响机器的质量,减低设备的使用寿命。 如齿轮齿面的磨损,破坏了渐开线齿形,传 动中导致冲击振动。机床主轴轴承磨损,影 响零件的加工精度。 (2) 降低机器的效率,消耗能量。如柴油机 缸套的磨损,导致功率不能充分发挥。 (3) 减少机器的可靠性,造成不安全的因素。 如断齿、钢轨磨损。
接 触 表 面 力 的 作 用 特 点
两体 磨损 三体 磨损 划伤 磨损 碾压 磨损 凿削 磨损
硬磨料或硬表面微凸体与一 犁铧、水 个摩擦表面对磨的磨损 轮机轮叶
磨粒介于两摩擦表面之间, 齿轮、滑 并在两表面间滑动 动轴承间
磨料的作用应力低于其压溃 犁铧、输 强度,材料表面被轻微划伤 送机溜槽 磨料与表面接触最大压应力 破碎滚筒 大于磨料的压溃强度 球蘑机球 磨料对表面有高应力冲击运 颚式破碎 动,材料表面被凿削 机齿板
添加剂;选用热导性高的摩擦副材料或加强冷却降
低表面温度;改善表面形貌以减少接触 压力等都
可以提高抗粘着磨损的能力。
b:相对滑动速度:载荷一定的情况下,粘着磨损量 随滑动速度的增加而增大。随着相对滑动速度的增 加,表面温度升高,表面生成的氧化膜阻止了金属 间的直接接触,减少了粘着磨损。
c:载荷的影响:
b:材料的互溶性:
?相同金属或互溶性大的材料摩擦副易发生 粘着磨损。 ?异种金属或互溶性小的材料摩擦副抗粘着 磨损能力较高。 ?金属与非金属摩擦副抗粘着磨损能力高于 异体金属摩擦副 。
c: 材料的组织结构和表面处理:
--多相金属比单相金属的抗粘着磨损能力
高。通过表面处理技术在金属表面生成硫 化物、磷化物或氯化物等薄膜可以减少粘 着效应,同时表面膜限制了破坏深度,提 高抗粘着磨损的能力。
循环不断进行,构成粘着磨损过程。
3五类典型粘着磨损
(1)轻微磨损:
粘着结合强度比摩擦副基体金属抗剪切强度都低, 剪切破坏发生在粘着结合面上,表面转移的材料较 轻微。
(2)涂抹:
粘着结合强度大于较软金属抗剪切强度,小于较 硬金属抗剪切强度。剪切破坏发生在离粘着结合面 不远的较软金属浅层内,软金属涂抹在硬金属表面。
d:材料的硬度: 硬度高的金属比硬度低的 金属抗粘着能力强,表面 接触应力大于较软金属硬 度的1/3时,很多金属将由 轻微磨损转变为严重的粘 着磨损。 e: 表面粗糙度:一般情况下, 降低摩擦副的表面粗糙度能 提高抗粘着能力。
硬度的影响
(2) 外部环境条件: a:润滑条件:在润滑油或润滑脂中加入油性或极压
4 磨粒磨损简化模型计算:
简单的计算方法根据微观切削机理得出,即拉宾诺 维奇 (Rabinowicz)模型: 假定单颗磨粒形状为圆 锥体,半角为θ ,载荷为W,压入深度h,滑动距 离为S,屈服极限σs 。
5 影响磨粒磨损的因素:
(1)硬度因素: 磨料硬度H0与试件硬度H比 值: 当磨料硬度低于试件硬 度, 即H0 < (0.7~1)H不产生 磨料磨损或产生轻微磨损。 当磨料硬度超过试件硬度后, 磨损量随磨料硬度而增加。 若磨料硬度很高将产生严重 磨损,此时磨损量不再随磨料硬度而变化。为了避免磨料 磨损,材料硬度应高于磨料硬度,一般当 H >1.3 H0 时 只发生轻微的 磨料磨损。
n 速度指数,一般为2~3,塑性材料波动小,
取2.3~2.4,脆性材料波动较大,取2.2~6.5。
(3)冲击角:
主要与靶材料有关。 塑性材料的磨损开始随冲击角的增加而 增加,当冲击角为20~30度时,磨损量最 大,然后随冲击角继续增大而减小。 脆性材料随冲击角的增大,磨损量不断 增大,当冲击角为90度时,磨损率最大。
第三章 磨损及磨损理论
概述:
1.1定义:摩擦副相对运动时,表面物质不断损失或
产生残余变形的现象。表面物质运动主要包括机械 运动、化学作用和热作用。
(1) 机械作用使摩擦表面发生物质损失及摩擦表 面的物理变形。 (2) 化学作用使摩擦表面发生性状的改变。
(3) 热作用使摩擦的表面发生形状的改变。
(4) 其他作用造成各种作用的产生。
(2)磨粒尺寸:一般金属的磨损率随磨粒平均
尺寸的增大而增大,当磨粒尺寸达到一定临 界尺寸后,磨损率不再增大,临界尺寸大约 为80μm。
磨粒尺寸影 响
(3)载荷的影响:磨损率与压力成正比,
但有一转折点,当压力达到或超过临界 压力时,磨损率随压力的增加变的平缓。
载荷
冲蚀磨损
1. 定义:流体或固体颗粒以一定的速度和角

量急剧增大。精度降低、间隙增大,温 度升高,产生冲击、振动和噪声,最终 导致零部件完全失效。
非典型磨 损曲线
2. 磨损特性曲线----浴盆曲线
典型浴 盆曲线
1.5 磨损、摩擦和润滑的关系
油膜 膜厚 比
磨损类型
2.1磨损
类型
2.2 表面破坏方式及特征
破坏方式
微动磨损 剥 层




磨损表面有粘着痕迹,铁金属磨屑被氧化成红棕色氧化物,通 常作为磨料加剧磨损。 破坏首先发生在次表层,位错塞积,裂纹成核,并向表面扩展, 最后材料以薄片状剥落,形成片状磨屑。
相 对 硬 度 磨 料 特 性 工 作 环 境
硬料磨损 软料磨损 干磨损 湿料磨损 流体磨损 一般磨损 腐蚀磨损 热料磨损
磨料硬度大于材料硬度 磨料硬度低于材料硬度 磨料是干燥的 磨料含水分,加速磨损 气或液体带磨料冲刷表面 正常条件下的磨料磨损 腐蚀介质中的磨料磨损 高温工作下的磨料磨损
石英-钢材 矿石-钢 球磨机干磨 球磨机湿磨 泥浆泵等 各类机械 化工机械等 沸腾炉等
(1)
磨合阶段:磨损量随时间的增加而增加。 出现在初始运动阶段,由于表面存在粗糙 度,微凸体接触面积小,接触应力大,磨 损速度快。
(2)稳定磨损阶段:摩擦表面磨合后达到稳
定状态,磨损率保持不变。标志磨损条 件保持相对稳定,是零件整个寿命范围 内的工作过程。
(3) 剧烈磨损阶段:工作条件恶化,磨损
当载荷增大到某一临界 值后,粘着磨损量会急 剧增加。右图是四球机
磨痕直径的变化,当载
荷达到一定值时,磨痕
直径迅速增大,此载荷
称为胶合载荷。
d:表面温度:
温度主要导致摩擦表面: (1)表面性质发生变化:如硬化、相变或软化。 (2)表面膜变化:破坏表面膜,导致氧化膜或 其它形式化合物膜形成。 (3)润滑剂的性质发生变化:油膜氧化或热降 解,油膜离析,分子链位向消失。一般情况 下,温度升高,材料硬度下降,在不考虑其 它因素的作用时,摩擦表面容易产生粘着磨 损。

咬 点 研 划 凿

死 蚀 磨 伤 削
表面存在明显粘着痕迹和材料转移,有较大粘着坑块,在高速 重载下,大量摩擦热使表面焊合,撕脱后留下片片粘着坑。
黏着坑密集,材料转移严重,摩擦副大量焊合,磨损急剧增加, 摩擦副相对运动受到阻碍或停止。 材料以极细粒状脱落,出现许多“豆斑”状凹坑。 宏观上光滑,高倍才能观察到细小的磨粒滑痕。 低倍可观察到条条划痕,由磨粒切削或犁沟造成。 存在压坑,间或有粗短划痕,由磨粒冲击表面造成
(3)擦伤:
粘着结合强度比两基本金属的抗剪强度都高。 剪切发生在较软金属的亚表层内或硬金属的亚表 层内,转移到硬金属上的粘着物使软表面出现细 而浅划痕,硬金属表面也偶有划伤。
(4)划伤:
粘着结合强度比两基体金属的抗剪强度都高, 切应力高于粘着结合强度。剪切破坏发生在摩擦 副金属较深处,表面呈现宽而深的划痕。
磨粒磨损
1 定义: 摩擦过程中,硬的颗粒或硬的凸出物冲刷 摩擦表面引起材料脱落的现象。磨粒是摩擦表面 互相摩擦产生或由介质带入摩擦表面。 2 磨料磨损分类及其磨损特征: 分类 类型 特 征 实例
磨料 固定 形态 自由 磨损 固定 磨损 磨粒自由松散,可以在表面 刮板、输 滑动或滚动,磨粒之间也有 送机溜槽 相对运动。 磨料固定,在磨损表面作相 采煤机截 对滑动,磨料可以是小颗粒,齿、挖掘 也可以是很大的整体颗粒。 机斗齿
(3)变形磨损理论:
比特1963年提出:该理论把冲蚀磨损分为变
形磨损和切削磨损。认为90度冲角下的冲蚀 磨损与粒子冲击靶材的变形有关,1972年, 谢尔登和凯希尔利用单颗粒冲蚀磨损实验证 实。
(4)薄片剥落理论: 莱维等人提出:认为冲蚀磨损时,形成薄 片的大应变出现在很薄的表面层中,该表 面由于绝热剪切变形而被加热到金属的退 火温度,于是形成了一个软的表面层,其 下面有一个由于材料塑性变形而产生的加 工硬化区,该区的形成对表面层薄片的形 成有促进作用,在反复的冲击和挤压变形 作用下,材料表面形成薄片而剥落。
3 磨粒磨损机理
(1) 微观切削:法向载荷将磨料压入摩擦表面, 而滑动时的摩擦力通过磨料的犁沟作用使表面 剪切、犁皱和切削,产生槽状磨痕。 (2) 挤压剥落:磨料在载荷作用下压入摩擦表面 而产生压痕,将塑性材料的表面挤压出层状或 鳞片状剥落碎屑。 (3) 疲劳破坏:摩擦表面在磨料产生的循环接触 力作用下,使表面材料因疲劳而剥落。
相关主题