当前位置:文档之家› MATLAB下的潮流计算实现-稀疏技术毕业设计

MATLAB下的潮流计算实现-稀疏技术毕业设计

毕业设计(论文)MATLAB下的潮流计算实现-稀疏技术毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:摘要电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗等等。

在电力系统规划的设计和现有电力系统运行方式的研究中,都需要利用潮流计算来定量地分析比较供电方案或运行方式的合理性、可靠性和经济性。

因此潮流计算是研究电力系统的一种很重要和很基础的计算。

由于电力系统结构及参数的一些特点,并且随着电力系统不断扩大,潮流问题的方程式阶数越来越高,对这样的方程式并不是任何数学方法都能保证给出正确答案的。

这种情况成为促使电力系统计算人员不断寻求新的更可靠方法的重要因素。

本文旨在于研究潮流计算的牛顿—拉夫逊法的基本原理,在Matlab环境中实现牛顿—拉夫逊法潮流计算的数学模型,程序流程以及编制相应程序,并在程序中融合了节点优化编号和稀疏技术,以提高计算效率。

最后用IEEE-3O节点标准测试系统验证所编程序。

关键词:潮流计算Newtom-Raphson法节点优化稀疏技术Matlab ABSTRACTPower flow calculation is fundanmental of analysis. Network reconfiguration,fault management,state estimator etc also need the data of electrial system power flow.There is important significance to develop power flow calculation in allusion to traits of distribution network.This paper introduces the principle of Newtom-Raphson algorithm, which is developed for calculation of power flow calculation ,where zero sequence network is open.With this algorithm,the three-phase load is resolved into positive/negative sequence power and coupling power,thus,decoupling three phase power flow into sequencet component power flow.The power flow can be obtained by just finding the positive sequence power flow and then finding the negative sequent component from the coupling pared with the existing methods,the jacobian matrix with the proposed algorithm is of much lower order,thus substantially reducing the computation burden.The proposed algorithm,together with a reference algorithm,has been simulated on an actual IEEE-30 system using statistic load date.And then it willanalyze on Matlab to test it accuracy.KEY WORDS: Power System Newtom-Raphson Flow Simulation Matlab目录摘要 (1)ABSTRACT (3)第一章绪论 (5)1 .1背景 (5)1.2 潮流计算的计算要求和分析要点 (5)1.3 潮流计算的发展 (6)1.4 本文的主要工作 (7)第二章潮流计算的数学模型 (8)2.1节点导纳矩阵的导出 (8)2.2潮流计算的定解条件 (10)2.3 潮流计算的约束条件 (11)第三章牛顿-拉夫逊法 (12)3.1 功率方程 (12)3.2修正方程式 (12)3.2.1 牛拉迭代法 (12)3.2.2潮流计算的修正方程 (13)3.3 绘制流程图 (15)第四章稀疏技术 (18)4.1稀疏矩阵的存贮 (18)4.2高斯消去法 (18)4.3因子表和三角分解 (20)4.4节点编号优化 (23)第五章算例分析 (26)5.1 MATLAB软件简介 (26)5.1.1 MA TLAB 的发展 (26)5.1.2 MA TLAB的主要功能 (26)5.1.3 MATLAB在电力系统中的应用 (27)5.2 IEEE-30系统算例分析 (28)5.2.1 IEEE-30节点系统的数据 (28)参考文献 (32)致谢 (34)附录A Matlab中的牛顿-拉夫逊法编程 (35)附录B IEEE-30节点详图 (44)第一章绪论1 .1背景电力系统潮流计算是电力系统分析中的一种最基本的计算,是对复杂电力系统正常和故障条件下稳态运行状态的计算。

潮流计算的目标是求取电力系统在给定运行状态的计算。

即节点电压和功率分布,用以检查系统各元件是否过负荷.各点电压是否满足要求,功率的分布和分配是否合理以及功率损耗等。

对现有电力系统的运行和扩建,对新的电力系统进行规划设计以及对电力系统进行静态和暂态稳定分析都是以潮流计算为基础。

潮流计算结果可用如电力系统稳态研究,安全估计或最优潮流等对潮流计算的模型和方法有直接影响。

在运行方式管理中,潮流是确定电网运行方式的基本出发点;在规划领域,需要进行潮流分析验证规划方案的合理性;在实时运行环境,调度员潮流提供了电完个在预想操作情况下电网的潮流分布以校验运行可靠性。

在电力系统调度运行的多个领域都涉及到电网潮流计算。

潮流是确定电力网络运行状态的基本因素,潮流问题是研究电力系统稳态问题的基础和前提。

1.2 潮流计算的计算要求和分析要点利用电子数字计算机进行电力系统潮流计算从50年代中期就已经开始。

在这20年内,潮流计算曾采用了各种不同的方法,这些方法的发展主要围绕着对潮流计算的一些基本要求进行的。

对潮流计算的要求可以归纳为下面几点:(1)计算方法的可靠性或收敛性;(2)对计算机内存量的要求;(3)计算速度;(4)计算的方便性和灵活性。

对潮流计算的分析主要根据计算的目的而定。

在电力系统运行方式中一般含高峰负荷和低谷负荷时运行方式下,在具有水力发电厂的电力系统中根据水电厂水文特点又有丰水期、平水期、枯水期的运行方式,此外,也需要研究事故运行方式和各种特殊运行方式。

在潮流计算中首先应效验网络枢纽点的电压水平及网络各节点的电压是否满足要求,其次效验各发电厂发电机的有功及无功出力是否符合技术要求,另外根据计算的要求对各线路、变压器的潮流进行分析。

1.3 潮流计算的发展电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法都离不开迭代。

因此,对潮流计算方法,首先要求它能可靠地收敛,并给出正确答案。

由于电力系统结构及参数的一些特点,并且随着电力系统不断扩大,潮流问题的方程式阶数越来越高,对这样的方程式并不是任何数学方法都能保证给出正确答案的。

这种情况成为促使电力系统计算人员不断寻求新的更可靠方法的重要因素。

在用数字计算机解电力系统潮流问题的开始阶段,普遍采取以节点导纳矩阵为基础的逐次代入法。

这个方法的原理比较简单,要求的数字计算机内存量比较下,适应50年代电子计算机制造水平和当时电力系统理论水平。

但它的收敛性较差,当系统规模变大时,迭代次数急剧上升,在计算中往往出现迭代不收敛的情况。

这就迫使电力系统计算人员转向以阻抗矩阵为基础的逐次代入法。

60年代初,数字计算机已发展到第二代,计算机的内存和速度发生了很大的飞跃,从而为阻抗法的采用创造了条件。

阻抗法要求数字计算机储存表征系统接线和参数的阻抗矩阵,这就需要较大的内存量。

而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行运算,因此,每次迭代的运算量很大。

这两种情况是过去电子管数字计算机无法适应的。

阻抗法改善了系统潮流计算问题的收敛性,解决了导纳法无法求解的一些系统的潮流计算,在60年代获得了广泛的应用,曾为我国电力系统设计.运行和研究作出了很大的贡献。

目前,我国电力工业中仍有一些单位采用阻抗法计算潮流。

阻抗法的主要缺点是占用计算机内存大,每次迭代的计算量大。

当系统不断扩大时,这些缺点就更加突出。

一个内存16K的计算机在采用阻抗法时只能计算100以下的系统,32K内存的计算机也只能计算150个节点以下的系统。

这样,我国很多电力系统为了采用阻抗法计算潮流就不得不予先对系统进行相当的简化工作。

为了克服阻抗法在内存和速度方面的缺点,60年代中期发展了以阻抗矩阵为基础的分块阻抗法。

这个方法把一个大系统分割为几个小的地区系统,在计算机内只需要存储各个地区系统的阻抗矩阵及它们之间联络线的阻抗,这样不仅大幅度地节省了内存容量,同时也提高了计算速度。

克服阻抗法缺点的另一途径是采用牛顿-拉夫逊法。

这是数学中解决非线性方程式的典型方法,有较好的收敛性。

在解决电力系统潮流计算问题时,是以导纳矩阵为基础的,因此,只要我们能在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿法潮流程序的效率。

自从60年代中期,在牛顿法中利用了最佳顺序消去法以后,牛顿法在收敛性.内存要求.速度方面都超过了阻抗法,成为60年代末期以后广泛采用的优秀方法。

相关主题