当前位置:文档之家› 实变函数积分理论部分复习题(附答案版)

实变函数积分理论部分复习题(附答案版)

2011级实变函数积分理论复习题一、判断题(判断正误,正确的请简要说明理由,错误的请举出反例)1、设{}()n f x 是[0,1]上的一列非负可测函数,则1()()nn f x fx ∞==∑是[0,1]上的Lebesgue可积函数。

(×)2、设{}()n f x 是[0,1]上的一列非负可测函数,则1()()nn f x fx ∞==∑是[0,1]上的Lebesgue可测函数。

(√)3、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞=⎰⎰。

(×)4、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞<⎰⎰。

(×,比如{}()n f x 为单调递增时,由Levi 定理,这样的子列一定不存在。

) 5、设{}()n f x 是[0,1]上的一列非负可测函数,则存在{}()n f x 的一个子列{}()k n f x ,使得,[0,1][0,1]lim ()d lim ()d k k n n k k f x x f x x →∞→∞=⎰⎰。

(×,比如课本上法都引理取严格不等号的例子。

) 6、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≤⎰⎰。

(√)7、设{}()n f x 是[0,1]上的一列非负可测函数,则[0,1][0,1]lim ()d lim ()d n n n n f x x f x x →∞→∞≥⎰⎰。

(×)8、设()f x 是[0,1]上的黎曼可积函数,则()f x 必为[0,1]上的可测函数。

(√,Lebesgue 积分与正常黎曼积分的关系)9、设()f x 是[0,)+∞的上黎曼反常积分存在,则()f x 必为[0,)+∞上的可测函数。

(√,注意到黎曼反常积分的定义的前提条件,对任意自然数0n,()f x 在[0,]n 上黎曼可积,从而()f x 是[0,]n 上的可测函数,进而()f x 是1[0,)[0,]n n ∞=+∞=上的可测函数)10、设{}()n f x 是[0,1]上的一列单调递增非负可测函数,[0,1],n G f 表示()n f x 在[0,1]上的下方图形,()lim ()n nf x f x ,则[0,1],n G f 单调递增,且1lim [0,1],[0,1],[0,1],nnnn G f G f G f ,[0,1],lim [0,1],n nmG fmG f 。

(√,用集合关系的定义,单调递增可测集列的极限性可以证明。

)二、叙述题(请完整地叙述以下定理或命题) (自己在书上找答案,务必要跟书上一模一样)1、单调收敛定理(即Levi 定理)2、Fatou 引理(法都引理)3、非负可测函数的Fubini 定理和Lebesgue 可积函数的Fubini 定理4、Lebesgue 控制收敛定理(两个)5、Lebesgue 基本定理(即非负可测函数项级数的逐项积分定理)6、积分的绝对连续性三、计算题(请完整写出计算过程和结果)1、设0D 为[0,]π中的零测集,30sin ,(),x x x D f x e x D ∉⎧⎪=⎨∈⎪⎩ ,求[0,]()d f x x π⎰。

解:由题设()sin f x x =,..a e 于[0,]π,而sin x 在[0,]π上连续,于是由积分的惟一性和L 积分与R 积分的关系得[0,][0,]()d sin d ()sin (cos )2f x x x x R xdx x ππππ===-=⎰⎰⎰。

2、设Q 为[0,+)∞中有理数全体,23sin ,[0,)\(),x x xxe x Q f x ex Q-⎧∈+∞⎪=⎨∈⎪⎩ ,求[0.)()d f x x +∞⎰。

解:因为Q 为可数集,所以0mQ =,从而2()x f x xe -=,..a e 于[0,)+∞,而2x xe-在[0,)+∞上非负连续,且22011()()d ()d 22x xR f x x R xe x e +∞+∞--+∞==-=⎰⎰, 所以由积分的惟一性和L 积分与R 积分的关系得222[0.)[0.)11()d d ()d 22x x x f x x xex R xex e+∞---+∞+∞+∞===-=⎰⎰⎰。

3、设P 为[0,1]上的Cantor 三分集,2,[0,)\()sin(),x x xe x Pf x e x P-⎧∈+∞⎪=⎨∈⎪⎩ ,求[0.)()d f x x +∞⎰。

解:因为0mP =,所以2()x f x xe -=,..a e 于[0,)+∞,而2x xe -在[0,)+∞上非负连续,且22011()()d ()d 22x xR f x x R xe x e +∞+∞--+∞==-=⎰⎰, 所以由积分的惟一性和L 积分与R 积分的关系得222[0.)[0.)11()d d ()d 22x x xf x x xe x R xe x e +∞---+∞+∞+∞===-=⎰⎰⎰。

4、计算20lim(1)d nn x n x e x n-→∞+⎰。

解: 令2[0,]()(1)()n xn n x f x e x nχ-=+,易见()n f x 在[0,)+∞非负可测,且()n f x 单调上升lim ()xn n f x e-→∞=,故由单调收敛定理200lim (1)d d 1n x x n xe x e x n+∞+∞--→∞+==⎰⎰。

5、积分计算(1)设为全体有理数所成的集合,在[0,1][0,1]E =⨯上函数f 定义如下:1,,(,)sin ,.xyx y f x y x y e x y +∉⎧=⎨++∈⎩求 ()d Ef z z ⎰。

(2)设为全体有理数所成的集合,在[0,1][0,1]E =⨯上函数f 定义如下:sin ,(,),(,)ln(1||),(,).xx y x y f x y e xy x y ∉⨯⎧=⎨++∈⨯⎩ 求 ()d Ef z z ⎰。

解:(1)记12{,,}r r ,令{(,):}k k A x y E xyr ,则()0,k m A 故10,kk mA 从而(,)1f x y 几乎处处于E 。

显然,1是E 上的连续函数,从而在E上有界且Riemann 可积,故由Riemann 积分与Lebesgue 积分的关系定理,1在E 上Lebesgue 可积且1d (R)1d d 1.EEz x y由于(,)1f x y 几乎处处于E ,故由积分的基本性质.(d )d 11EEf z z z ==⎰⎰(2)解:因0,m 从而(,)sin f x y x y 几乎处处于E 。

显然,sin x y 是E上的连续函数,从而在E 上有界且Riemann 可积,故由Riemann 积分与Lebesgue 积分的关系定理,sin x y 在E 上Lebesgue 可积且1101sin d(,)(R)sin d d d sin d (1cos1).2EEx y x y x y x yx xy y由于(,)sin f x y x y 几乎处处于E ,故由积分的基本性质1sin d(,)(1co ()d s1).2E Ef x y z y x z =-=⎰⎰三、证明题(请完整地写出以下命题的证明)1、用Fubini 定理证明:若(,)f x y 为2R =(,+)(,+)-∞∞⨯-∞∞上的非负可测函数,则d (,)d d (,)d x yx f x y y y f x y x +∞+∞+∞=⎰⎰⎰⎰。

证明:记00{(,)}{(,)}0x y D x y x y y xy x ≤<+∞≤<+∞==≤≤≤≤+∞,令(,),(,)(,)0,(,)f x y x y DF x y x y D ∈⎧=⎨∉⎩,由题设易知(,)F x y 也是2R 上的非负可测函数,于是,由非负可测函数的Fubini 定理2d (,)d d (,)d (,)d d x R x f x y y x F x y y F x y x y +∞+∞+∞-∞-∞==⎰⎰⎰⎰⎰d (,)d d (,)d yy F x y x y f x y x +∞+∞+∞+∞-∞-∞==⎰⎰⎰⎰。

2、设E 是R n中的可测集,若(1)1k k E E ∞==⋃,其中k E 为可测集,12E E ⊂⊂;(2)()f x ,()n f x (12)n =都是E 上的可测函数,且lim ()()n n f x f x →∞= ..a e 于E ;(3)存在E 上的Lebesgue 可积函数()F x ,使得n ∀,()()n f x F x ≤ ()x E ∈。

证明:()f x 在E 上也Lebesgue 可积,且 lim()d ()d nn n E Ef x x f x x →∞=⎰⎰。

证明:记()()()n n n E f x f x x χ=⋅,由题设知lim ()()n n f x f x →∞= ..a e 于E (事实上x E ∀∈,存在0n ,当0n n ≥时,总有n x E ∈,从而()1n E x χ=,于是()()()()n n n E n f x f x x f x χ=⋅=。

)又 ()()()()()n n n E n f x f x x f x F x χ=⋅≤≤,()F x 在E 上Lebesgue 可积 所以 由Lebesgue 控制收敛定理,并注意到()()()()n nn n E n EEE f x dx f x x dx f x dx χ=⋅=⎰⎰⎰可得lim ()lim ()()nn n n n E EEf x dx f x dx f x dx →∞→∞==⎰⎰⎰。

3、设E 是Lebesgue 可测集,()n f x (12)n =,()f x 都是E 上的Lebesgue 可积函数,若lim ()()n n f x f x →∞= ()x E ∈,且lim ()d ()d n n EEf x x f x x →∞=⎰⎰,证明:(1)()()()()()n n n F x f x f x f x f x =+--在E 上非负可测;(2)用Fatou 引理证明:lim()()d 0n n Ef x f x x →∞-=⎰。

相关主题