泊松分布
体均数为λ1+λ2。
从同一水源独立地取水样5次,进行细菌培养,
每次水样中的菌落数分别为Xi,i=1,…,5,均服 从Poisson分布,分别记为Π(λi), i=1,…,5, 把5份水样混合,其合计菌落数∑Xi也服务 Poisson分布,记为Π(λi+λi +…+λ5).
例
某一放射性物体,以一分钟为时间单位的放射性计数
(一)概率估计和累积概率
概率估计 例 实验显示某100cm2的培养皿中菌落数等于3个的
概率
6 P( X 3) e 0.089 3!
6
3
例:如果某地居民脑血管疾病的患病率为150/10万,
那么调查该地1000名居民中有2人患脑血管疾病的概 率有多大?
n 1000 0.0015 1.5
例 8-9泊松分布的配合适度
将培养皿中的细菌稀 表8-4 细菌在计数小方格中的分布 释液置于血球计上, 每小格 观察的 数出小方格中的细菌 细菌数(x) 方格数(f) 数,共计128个方格, 计数结果见右表。问 0 26 此分布是否符合泊松 1 40 分布? 2 38
3 4 17 7
Poisson分布拟合优度检验计算表
当n很大而π很小,且nπ =为常数时,二项分布近似 Poisson分布 Poisson分布的总体均数和方差相等:即=2 当增大时,Poisson分布渐近正态分布;当≥20时Poisson 分布资料可作为正态分布处理 Poisson分布具有可加性
Poisson分布的均数和方差
n 当 0时 , 1 1 n (1 ) n
应用均数=方差的特点可以检验样本中各计数(x1 ,
x2 ,… xn)是否来自同一总体有随机样本。用所观察到 的样本数据,作如下卡方检验,其自由度为n-1
2
i 1
( xi x )
n
2
x
这一检验和上面介绍的泊松分布配合适度检验都可用
于检验某一样本是否来自泊松分布,或检验某事件 (或颗粒)之间是否独立或是否有聚集性。
样本,没有理由说此乡肝癌死亡率低于该高发区的平 均水平。
例 8-7
对于大样本资料置信区间可近似地运用正态分布法进
行
同一样品分别用 10 个平皿进行培养,共数得菌落数
1460个,试估计该样品菌落数的 95% 置信区间。
95%CI : 1.96 99%CI : 2.58
样本值X=5,对应的概率
35 3 P( X 5 | 3) e 0.10081 5! 3 X 3 P( X ) e X!
X 0 1 2 3 4 5 6 7 8 9 10
P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
3 0 1
合计
400
Poisson的可加性
从总体均数为λ1的Poisson分布总体中随机抽出一份样
本,其中稀有事件的发生次数为X1次,
再独立地从总体均数λ2的Poisson分布总体中随机抽出
另一份样本,其中稀有事件的发生次数为X2,
则它们的合计发生数T=X1+X2也服从Poisson分布,总
X1+X2≥20 5<X1+X2 < 20 例 8-12
u u x1 x 2 x1 x 2 x1 x 2 1 x1 x 2
例 8-12
用甲、乙两种培养基对水质进行细菌培养,在相同的条
件下, 用甲培养基的菌落数为100, 用乙培养基的菌落 数为150, 问两培养基的菌落数的差别有无显著性?
用途:
用来描述研究单位时间内(或单位空间、容积内)某
罕见事件发生次数的分布:如
单位体积的水或牛奶中的细菌数的分布 计数空气中细菌或灰尘的分布 放射性物质在单位时间内放射次数的分布
用来分析医学上人群中遗传缺陷、癌症等发病率很低
的非传染性疾病的发病或患病人数的分布
二、泊松分布的性质
1.52 P( X 2) e 1.5 0.251 2!
调查该地1000名居民中有2人患脑血管疾病的概率为 25.1%
累积概率
如果稀有事件发生次数的总体均数为λ,则发生次数至 多为k次的概率为
P ( X k ) P( X ) e
x 0 x 0
k
k
X
X!
发生次数至少为k次的概率为:
10万人,作回顾调查,得某年宫颈癌死亡人数 为30人。假设该地女性人口年龄构成与全省基 本相同。问该地宫颈癌死亡率与全省有无差别?
当泊松分布均数较大时,可用正态分布来近似,且方
差=均数,用下式进行检验,统计量Z近似服从标准正 态分布
Z
X 0
0
2. 两样本均数比较的u检验
当两样本的观察单位(时间、面积、容积) 相同时:
不相同时:
X1+x2≥20
u X1 X 2 X1 X 2 2 2 n1 n2 X1 X 2 1 X1 X 2 2 2 n1 n2
5<X1+x2 < 20
u
例8-13
例8-13 两样本计数差别的统计检验
某车间在改革生产工艺前,测取三次粉尘浓度,每升空气
中分别有38,39,36颗粉尘;改进工艺后,测取两次,分 别有25,18颗粉尘。问工艺改革前后粉尘数有无差别? H0:μ1 = μ2 H1:μ1≠μ2 α=0.05
0 2 4 6 8 10 12 14 16 18 20
1 2 3 6
泊松分布的图形是由平均数来确定的
三、泊松分布的应用
(一)概率估计和累积概率计算 (二)置信区间的估计
例 8-6 例 8-7 概率估计 例 8-8 例 8-8 例 8-9 例 8-10
(二)泊松分布的配合适度检验
(三)泊松分布资料的差异显著性检验
x1 ( 38 29 36) / 3 34.33 x 2 ( 25 18) / 2 21.50 u 34.33 21.50 34.33 / 3 21.50 / 2 2.732
u
X1 X 2 X1 X 2 n1 n2
P<0.01,拒绝H0接受H1
用泊松分布对聚集性的研究
x P(x) 0.1779 0.3071 0.2651 0.1526 0.0658 T A (A-T)2/T
0
1 2 3 4 合计
27.90
42.50 32.37 16.44 6.26
26
40 38 17 7
0.1294
0.1474 0.9775 0.0191 0.0872 1.3606
自由度=组数-1-1=5-2=3
一个放射性物体5分钟测得脉冲数为200次, 这两种物体混合后估计5分钟脉冲数的总体 平均数及标准差是多少?
140+200=340
340 18.44
二、泊松分布的图形
泊松分布的特征只决定于平均数 ,不同的参数对应
不同的Poisson分布,即的大小决定了Poisson分布 的图形特征
例
在室内不同位置放置6个平皿,隔一定时间后进行培
养,得葡萄球菌落数分别为21,26,22,18,19, 32,问细菌在室内不同位置的分布是否随机?
x 23
2 5.91 6 1 5
2 0.05(5) 11.07 2 2 0.05(5) , p 0.05
例:计算置信区间
某乡有4000人口,连续3年无肝癌死亡。该乡位于肝
癌死亡率连年达到每10万人口29人的高发地区。问这 个乡肝癌死亡率是否较该高发区平均水平为低?
应死亡:4000×3×29/10万=3.48人, x=0时的95%可信区间:查表得(0,3.7) 包括了3.48,故该乡仍可认为是该高发区的一样随机
泊松分布的均数与它的方差相等
计算平均数和 例:有人观察血细胞计数池中400小格,并数出小格中红 和方差,看 细胞数,如下图,问此分布是否符合Poisson分布? 是否相等 每小格红细胞数(x) 0 1 2 3 4 5 6 7 小格数 11 36 76 80 74 58 38 17
8
9 10 11
6
类似Fisher’s检验, P值=小于等于样本点的概率的概率之和 或者P值= 1-(大于样本点概率的概率之和)
X 0 1 2 3 4 5 6 7 8 9 10 P(X) 0.0498 0.1494 0.2240 0.2240 0.1680 0.1008 0.0504 0.0216 0.0081 0.0027 0.0008
P值 =1-(大于样本点概率的概率之和) =1-P(4)-P(3)-P(2)-P(1) =1-0.1494-0.2240-0.2240-0.1680 =0.2346 >0.05, 因此不能认为放在5。C冰箱中培养液中细菌数有变化
正态近似法 样本计数与总体均数差别的统计检验
某省宫颈癌死亡率为27.58/十万,该省抽查
泊松分布的概率
如果某事件的总体平均发生次数为λ,则在n个独
立试验中,则该事件发生x次的概率为:
P( X )
e=2.71828
e
x
x=0,1,2,3…
x!
λ为总体平均数
Poisson分布的条件
n值很大,而π(或1-π)很小的二项分布 π或1- π接近于0或1:如<0.001或>0.999 二项分布的条件
为50,20,20,40,10,问如果以5分钟为时间单位, 其标准差是多少?
据泊松分布的可加性原理,可计算出5分钟计数为:
50+20+20+40+10=140