当前位置:文档之家› 传感器论文

传感器论文

沈阳工学院结课论文设计验收报告题目:车类电机转速测量的设计院系:信息与控制学院专业:电子信息工程班级学号: 12309129学生姓名:宋明亮指导教师:付丽华成绩:年月日1 需求分析 (3)2 设计方案要求 (4)2.1 功能及技术要求 (4)(1)测速范围 (4)2.2 测速及倒车提示系统设计方案论证 (4)3 硬件电路的设计 (7)3.1 超声波测距电路 (7)3.1.2方案二:光电传感器 (9)4. 转速检测电路 (11)4.2数码管显示电路 (13)4.3 直流电机控制电路 (15)5结束语 (10)1 需求分析随着人们生活水平的不断提高,汽车已经成为生活中主导的交通工具,汽车产业蓬勃发展。

为保障汽车驾驶时的舒适性和安全性世界各国对汽车防撞技术的研究和发展投入了大量的人力、物力和财力,据统计,危机情况时,如果能给驾驶员半秒钟的预处理时间,则可分别减少追尾事故的30%,路面相关事故的50%,迎面撞车事故的60%,所以现在汽车安装各类测距系统以保障行车安全。

针对我国高速公路交通安全的需要,以及国内外汽车电子技术的应用现状和发展趋势,综合汽车电子技术、通讯技术和控制技术等多学科理论,从必要性、可行性、实用性和经济性等角度出发,提出开发研制汽车测速及倒车提示系统。

目的在于当行车处于高速及倒车状态时,提醒驾驶员或自动采用相应措施,从而减少或避免高速公路碰撞事故的发生。

2 设计方案要求2.1 功能及技术要求(1)测速范围测速范围分为四档:第一档速0—130cm/s,第二档速130—200cm/s,第三档速200—260cm/s,第四档速260—300cm/s。

(2)倒车测距范围。

该模拟系统的测量范围在2—3米之间。

当距离小于20cm时,电机自动停止,或者说在大于20cm时,也可以通过按键使电机停止。

(3)按键功能如表2-1所示。

表2-1 按键功能表按键名称K1 倒转键K2 减速键K3 加速键K4 正转键K5 复位键S1 S2 进入倒车状态(4)显示功能。

该系统具备显示功能,显示内容有正常运行的转速及倒车状态时障碍物与汽车尾部的距离,其显示精度为1cm。

2.2 测速及倒车提示系统设计方案论证2.2.1发射与接收模块方案一:采用后视摄像进行倒车这种方法可以获得障碍物的直观图像,但无法测得准确的距离;虽然其可靠性高但是价格较高,得不到普遍的推广使用;这种方法还存在一些其他的缺陷,如其在夜间会受到影响,无法重现图像,使其在晚间如同虚设,不仅如此,它还会受到天气的影响,在阴雨、雾雪天气,后视摄像这种方法同样起不到效果。

方案二:采用超声波倒车超声测距一般采用40KHz的脉冲信号。

常用有CX20106集成芯片,使用方便简单,只需在外围电路加常见的反向驱动集成块74LS04,使用起来效果很明显而且价格合理。

超声波测距虽然没有清晰的图像,但是其可以测得准确的距离,让使用者无论是在白天还是在晚上都能明确的了解到其后边的障碍物。

超声测距也存在缺点,就是对车后的路坑、山崖、凸出的某些障碍物无法感应。

在此设计属于模拟系统,所以采用方案二比较经济合理。

2.2.2 转速检测电路模块方案一:霍尔式轮速检测霍尔轮速传感器由磁钢、霍尔元件及电平转换电路组成,霍尔轮速传感器核心为霍尔元件,霍尔元件通过齿轮的运动输出mV级的准正弦波电压,选用UGN3019开关型集成霍尔元件,可实现将准正弦波电压转为标准脉冲电压。

霍尔轮速传感器输出的脉冲信号频率与转速成正比关系,对脉冲信号可采用多种方法进行处理分析。

开关型霍尔传感器尺寸小、工作电压范围宽,工作可靠,但是对于该模拟系统,不需要这么高精度的检测。

方案二:光电式轮速检测光电式轮速传感器由光源、转动圆盘、光敏元件及有关电路组成。

转动圆盘被安装在转轴上,转动圆盘边缘开有等距离的孔,光源发出的光通过圆盘小孔照射到光敏元件上。

当测速盘旋转切割光开关时,光敏检测元件输出一串脉冲信号,脉冲频率与转速成正比。

转速n与脉冲频率f关系为:n=60*f/p(r/min),其中p为圆盘开孔总数。

若取p=60,则f=n,即轮速传感器输出信号频率便是车轮每分(钟)转数。

通过以上分析采用方案二实现了高精度、宽范围的测量,比较符合要求。

2.2.4 显示模块方案一:采用LCD液晶显示该模拟系统只需要对车速或倒车时的距离进行显示,若采用液晶显示,虽然不需要外接驱动电路,也不会占用单片机的I/O口,而且软件编写简单,节约了CPU资源,但是液晶显示增加了成本,对四位数据的显示根不需要这么浪费,所以这部分的显示,根据实际情况的需要用LCD液晶显示不合理。

方案二:数码管显示采用数码管显示,需要外加驱动电路,但是简单的三极管就可以驱动,所以外加的驱动电路并不复杂。

因为显示的内容简单,仅四位数字,对于I/O口的占用也不是很多,数码管价格便宜。

对该显示电路来说采用数码管显示很合理。

2.2.5 直流电机控制电路模块方案一:串电阻调速系统。

旋转变流系统由交流发电机拖动直流电动机实现变流,由发电机给需要调速的直流电动机供电,调节发电机的励磁电流即可改变其输出电压,从而调节电动机的转速。

改变励磁电流的方向则输出电压的极性和电动机的转向都随着改变,所以G-M系统的可逆运行是很容易实现的。

该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机,还要一台励磁发电机,设备多、体积大、费用高、效率低、维护不方便等缺点。

且技术落后,因此搁置不用。

图2.1 测速及倒车提示原理方框图倒车检测-------- 超声波检测;转速检测-------- 光电式传感器检测;控制器 -------- AT89S52单片机;显示模块-------- 数码管显示;直流电机-------- 脉宽调速系统。

3 硬件电路的设计3.1 超声波测距电路超声波测距原理简单、成本低、制作方便,超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物立即返回来,超声波接收器接收到反射波就立即停止计时。

基于单片机的超声波测距设计,是利用单片机编程产生频率为40kHz 的方波,经过发射驱动电路放大,使超声波传感器发射端震荡,发射超声波。

超声波波经反射物反射回来后,由传感器接收端接收,再经接收电路放大、整形,控制单片机中断口。

如图3.1所示:图3.1 发射与接收原理框图 3.1.1方案一:霍尔传感器测量方案霍尔传感器是利用霍尔效应进行工作的?其核心元件是根据霍尔效应原理制成的霍尔元件。

本文介绍一种泵驱动轴的转速采用霍尔转速传感器测量。

霍尔转速传感器的结构原理图如图3.1, 霍尔转速传感器的接线图如图3.2 。

传感器的定子上有2 个互相垂直的绕组A 和B , 在绕组的中心线上粘有霍尔片HA 和HB ,转子为永久磁钢,霍尔元件HA 和HB 的激励电机分别与绕组A 和B 相连,它们的霍尔电极串联后作为传感器的输出。

数字显示 功能键单片机发射驱动接受处理图3.1 霍尔转速传感器的结构原理图图3.2 方案霍尔转速传感器的接线图缺点:采用霍尔传感器在信号采样的时候,会出现采样不精确,因为它是靠磁性感应才采集脉冲的,使用时间长了会出现磁性变小,影响脉冲的采样精度,如图3.2 霍尔转速传感器的工作原理图。

图3.2 霍尔转速传感器的工作原理图3.1.2方案二:光电传感器整个测量系统的组成框图如图3.2所示。

从图中可见,转子由一直流调速电机驱动,可实现大转速范围内的无级调速。

转速信号由光电传感器拾取,使用时应先在转子上做好光电标记,具体办法可以是:将转子表面擦干净后用黑漆(或黑色胶布) 全部涂黑,再将一块反光材料贴在其上作为光电标记,然后将光电传感器(光电头) 固定在正对光电标记的某一适当距离处。

光源为高可靠性可见红光,无论黑夜还是白天,或是背景光强有大范围改变都不影响接收效果。

光电头包含有前置电路,输出0—5V的脉冲信号。

接到单片机89C51的相应管脚上,通过89C51内部定时/计时器T0、T1及相应的程序设计,组成一个数字式转速测量系统。

图3.2 测量系统的组成框图优点:这种方案使用光电转速传感器具有采样精确,采样速度快,范围广的特点。

综上所述,方案二使用光电传感器来作为本设计的最佳选择方案。

4 转速检测电路红外测距仪由测距轮,遮光盘,红外光电耦合器及凹槽型支架组成的。

测长轮的周长为记数的单位,最好取有效值为单一的数值(如本设计中采用0.1米),精度根据电动车控制的需要确定。

测距轮安装在车轮上,这样能使记数值准确一些。

4.1 转速检测原理介绍图 4.1转速检测的实物图 如图4.1所示:遮光盘有四个缺口,盘下方的凹形物为槽型光电耦合器,其两端高出部分的里面分别装有红外发射管和红外接收管。

遮光盘在凹槽中转动时,缺口进入凹槽时,红外线可以通过,缺口离开凹槽红外线被阻挡。

由此可见,测距轮每转一周,红外光接收管均能接收到四个脉冲信号经过整形器后送入计数器或直接送入单片机中。

4.1.1 芯片简介光电耦合器是一种把红外发射器和红外光接收器件以及信号处理电路等封装在同一管座内的器件。

当输入电信号加到输入端发光器件LED 上,LED 发光,光接受器件接收光信号并转换成电信号然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。

图4.1.1 光电耦合器四个缺口 槽型光电耦合器如图4.1.1:光电耦合器结构简单,由一个发光二极管和一个光敏二极管组成,常用于50Hz以下工作频率的装置中。

其工作时信号加至输入端,使发光二极管发光,光敏元件接收发光二极管的光辐射在输出端输出光电流,从而实现电—光—电的转换,并实现了输入端与输出端的耦合。

在光电耦合器件输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电-光-电的转换。

其基本特性有:(1)共模抑制比高在光电耦合器内部由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比高。

(2)输入特性1)正向工作电流If:If是指LED正常发光时所流过的正向电流值,不同的LED所允许流过的最大电流值也不一样。

2)正向脉冲工作电流Ifp:Ifp是指流过LED的正向脉冲电流值,为了保证寿命,通常会采用脉冲形式来驱动LED。

3)正向工作电压Vf:Vf是指在给定的工作电流下,LED本身的压降。

4)反向电压Vr:是指LED所能承受的最大反向压降。

5)反向电流Ir:通常是指在最大反向电压情况下,流过LED的反向电流。

6)允许功耗Pd:LED所能承受的最大功耗。

相关主题