当前位置:文档之家› 幅角基本知识及其应用

幅角基本知识及其应用


f (z) z a g(z)
g(z)
由此,a为 f '(z) 一阶极点且Res[ f '(z) ,a] = n。
f (z)
f (z)
4
引例2 设b为f (z)的m阶零点,证明:b 为 f '(z) 一阶极点
f (z) 且Res[ f '(z) ,a] = -m。
f (z)
证明 b为f(z)的m级极点,则在b的去心邻域内有
2 i
d ln
C
f (z)
1
2 i
[ dln
C
|
f
(z)
| i d arg
C
f
(z)]
C arg f (z)
2
7
二、幅角原理
定理2 设C一条周线,f(z)符合条件:1 f(z)在C内是亚纯的; 2 f(z)在C上解析且不为零,则有
N( f ,C) P( f ,C) C arg f (z)
零点数为: N f ,C 3
6
定理1 设C一条周线,f(z)符合条件:1 f(z)在C内是亚纯的; 2 f(z)在C上解析且不为零,则有
另一dz f (z)
N( f ,C) P(
f ,C)
1
2 i
C
f '(z) dz f (z)
1
2 i
d
C
dz
[lnf
(
z)]dz
1
arg P iy n
y( )
9
10
三、儒歇(Rouché)定理
z在C上时有:(z) f (z)
11
儒歇定理
(z) f (z)
注:儒歇定理的 典型用途之一是将一个复杂的解析函数g同
零点已知的解析函数比较,推出关于零点的一些信息。
例4 证明多项式 g(z) z4 3z+1 的全部4个零点都位 于 z 2 内。 例5 证明: 满足条件 at | a0 | | a1 | | at1 | | at1 | | an|
4
8
在自动控制中,一些技术的稳定性归结为要求常系 数线性微分方程解的稳定性,而这类问题要求该方 程的特征多项式
P z a0zn a1zn1 an
的根全在左半平面。利用幅角原理可以得到这问题 的一个判据。 例3 证明:在虚轴上没有零点的n次多项式
P z a0zn a1zn1 an (a0 0)
f (z) = h(z) (z b)m
从而 f '(z) -m h '(z) ,其中 h '(z) 在点b的邻域内解析
f (z) z b h(z)
h(z)
由此,b为 f '(z) 一阶极点且Res[ f '(z) ,b] = -m。
f (z)
f (z)
5
考察积分
1
2 i
C
f '(z) dz f (z)
引例1 设a 为f (z)的n阶零点,证明:a为 f '(z) 一阶极点 f (z)
且Res[ f '(z) ,a] = n。 f (z)
证明 设a为f(z)的n级零点,则可写
f (z) = (z - a)n g(z)
从而 f '(z) n g '(z) ,其中 g '(z) 在点a的邻域内解析
幅角原理及应用
1
留数和留数定理
一、对数留数 二、 幅角原理 三、儒歇定理
2
留数和留数定理
定义:如果函数 f 在区域D内除去极点外 处处解析,则称f 为区域D内的亚纯函数。
有理函数在整个平面上都是亚纯函数 若f 在闭周线C内是亚纯的,在C上解析且不取 零点,则 f 在C内至多有有限个极点。
3
一、对数留数
2
例2.设 f (z) =
z - 72 z3
,C:z = 4,验证幅角原理
z - 54 z + 22 z - 15
解 一方面 N f ,C-P( f ,C) 37 4
另一方面 C arg f (z) 3C argz 2C arg z 22 5C arg z 1
2
2
3 2 2 2 5 2 2
的多项式 P z a0zn a1zn1 +at znt an (a0 0)
12
如: 方程 z8 5z5 在2z单位1 圆0内有( )个根 方程 z8 5在z 单1位圆0 内有( )个根 方程 z8 6z在1单0位圆0 内有( )个根 z4 8z 10 0
13
若f (z)在C内亚纯且在C上解析、不取零值。
明显地,f '(z) 的极点只可能来自于f(z)的极点和零点. f (z)
计算函数的零点或极点的个数时,通常包含重数。
例1.设 f (z) =
z - 72 z3
,则f (z)在C:z = 4内的极点数为
z - 54 z + 22 z - 15
P(f, C) (每个极点的阶)=2+5=7 C内的极点
相关主题