继续教育学院毕业设计(论文)题目:CA6140主轴的加工工艺的分析院、系(站):西安机电信息技术学院机电工程系学科专业:数控加工与维护学生:刘党路学号:指导教师:杨双2012年10月继续教育学院毕业设计(论文)题目:CA6140主轴的加工工艺的分析院、系(站):西安机电信息技术学院机电工程系学科专业:数控加工与维护学生:刘党路学号:指导教师:杨双2012年10月主轴的加工工艺的分析摘要主轴是车床的关键零件之一,其性能好坏直接影响到车床的性能和加工精度.轴支持车床卡盘的转动,是转动零件具有确定的工作位置,同时传递运动和扭矩,因此要求轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。
车床主轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。
本课题仅CA6140型车床主轴的加工工艺的分析。
工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。
所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。
关键词:机械加工;精度;误差;工艺分析;目录1 绪论 (1)1.1轴类零件的简单介绍 (1)1.2主轴图样 (1)2 零件加工工艺分析 (3)2.1零件图的分析 (3)2.1.1零件图的工艺分析 (3)2.1.2零件的组成 (4)2.1.3主轴各主要部分的作用及技术要求 (4)2.1.4主轴加工的要点与措施 (5)2.2划分加工阶段的理由 (6)2.3工序划分的原则 (7)2.3.1 CA6140车床主轴主要加工表面加工工序安排 (7)2.3.2 CA6140车床主轴加工工艺过程 (9)2.4轴类零件的材料、毛坏及热处理的选择 (11)2.4.1轴类零件的材料 (11)2.4.2零件的毛坏 (12)2.4.3类零件的热处理 (12)3 工件的装夹 (14)3.1 定位基准的选择 (14)3.1.1 CA6140车床主轴加工定位基准的选择 (14)3.2 零件的定位装夹 (15)3.2.1改进工件的装夹方法 (15)3.2.2本题采用的装夹方法 (16)4 零件的加工顺序及切削用量 (17)4.1加工顺序及刀具选择 (17)4.2刀具的选择 (17)4.3切削用量的确定 (17)4.4加工精度 (20)结论 (21)致谢词 (22)参考文献 (23)1 绪论毕业设计在我们学完大学的全部基础课、技术基础课之后进行的,这是我们在进行毕业设计对所学各课程的深入综合性的总复习,也是一次理论联系实际的训练,因此,它在我们的大学生活中占有重要的地位。
另外在做完这次毕业设计之后,我得到一次在毕业工作前的综合性训练,我在想我能在下面几方面得到锻炼:(1)运用机械制造工艺学课程中的基本理论以及在生产实习中学到的实践知识,正确地解决一个零件在加工中的定位,夹紧以及工艺路线安排,工艺尺寸确定等问题,保证零件的加工质量。
(2)提高结构设计能力。
通过设计夹具的训练,获得根据被加工零件的加工要求,设计出高效,省力,经济合理而能保证加工质量的夹具的能力。
(3)学会使用手册以及图表资料。
掌握与本设计有关的各种资料的名称,出处,能够做到熟练的运用。
就我个人而言,我希望通过这次毕业设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己发现问题、分析问题和解决问题的能力。
因此,提高机械加工零件的质量和精度是很重要的,机械车削加工质量和精度的提高有利于加工行业的整体水平、地位的发展和提升。
1.1轴类零件的简单介绍实际中,零件的结构千差万别,但其基本几何构成不外是外圆、内孔、平面、螺纹、齿面、曲面等。
很少有零件是由单一典型表面所构成,往往是由一些典型表面复合而成,其加工方法较单一典型表面加工复杂,是典型表面加工方法的综合应用。
轴是机械加工中常见的典型零件之一。
它在机械中主要用于支承齿轮、带轮、凸轮以及连杆等传动件,以传递扭矩。
按结构形式不同,轴可以分为阶梯轴、锥度心轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等其中阶梯传动轴应用较广,其加工工艺能较全面地反映轴类零件的加工规律和共性。
本课题是围绕常见的CA6140主轴,来简述轴类零件的加工工艺以及加工方法。
1.2主轴图样图1.1 CA6140主轴图样2 零件加工工艺分析2.1零件图的分析零件图分析是制定数控车削工艺的首要任务。
主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。
此外还应分析零件结构和加工要求的合理性,选择工艺基准。
典型轴类零件如图1-1所示,零件材料为40Cr,经过锻造和正火处理,对该零件进行车削工艺分析。
2.1.1零件图的工艺分析a 尺寸标注方法分析零件图上的尺寸标注方法应适应车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。
这种标注方法有利于设计基准、工艺基准、测量基准。
如果零件图上各方向的尺寸没有统一的设计基准,可考虑在不影响零件精度的前提下选择统一的工艺基准。
计算转化各尺寸,以利于安排加工工艺。
b 轮廓几何要素分析该零件轮廓没有大的浮动变化,有利于一次装夹定位加工,且测量比较方便简洁,在加工中要多次进行热处理,制定相应的夹具有利于在不影响精度的条件下进行有序的加工。
c 精度和技术要求分析对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。
其主要内容包括:分析精度及各项技术要求是否齐全、是否合理;分析本工序的车削加工精度能否达到图纸要求,若达不到,允许采取其他加工方式弥补时,应给后续工序留有余量;对图纸上有位置精度要求的表面,应保证在一次装夹下完成;对表面粗糙度要求较高的表面,应采用恒线速度切削(注意:在车削端面时,应限制主轴最高转速)。
2.1.2零件的组成图1.1CA6140零件简图。
由零件简图可知,该主轴呈阶梯状,其上有安装支承轴承、传动件的圆柱、圆锥面,安装滑动齿轮的花键,安装卡盘及顶尖的内外圆锥面,联接紧固螺母的螺旋面,通过棒料的深孔等零件材料为40Cr钢,有热处理和硬度要求。
通过上述分析,可采用以下几点工艺措施:a对图样上给定的几个精度要求较高的尺寸,因其公差数值较大,在加工时需,而全部取其基本尺寸即可。
b在轮廓曲线上,有三处为圆弧,其中两处为既过象限又改变进给方向的轮廓曲线,因此在加工时应进行机械间隙补偿,以保证轮廓曲线的准确性。
c为便于装夹,坯件左端应预先车出夹持部分(双点画线部分),右端面也应先粗车出并钻好中心孔。
毛坯选φ120㎜棒料。
2.1.3主轴各主要部分的作用及技术要求⑴支承轴颈主轴二个支承轴颈A、B圆度公差为0.005mm,径向跳动公差为0.005mm;而支承轴颈1∶12锥面的接触率≥70%;表面粗糙度Ra为0.4mm;支承轴颈尺寸精度为IT5。
因为主轴支承轴颈是用来安装支承轴承,是主轴部件的装配基准面,所以它的制造精度直接影响到主轴部件的回转精度。
⑵端部锥孔主轴端部内锥孔(莫氏6号)对支承轴颈A、B的跳动在轴端面处公差为0.005mm,离轴端面300mm处公差为0.01 mm;锥面接触率≥70%;表面粗糙度Ra为0.4mm;硬度要求45~50HRC。
该锥孔是用来安装顶尖或工具锥柄的,其轴心线必须与两个支承轴颈的轴心线严格同轴,否则会使工件(或工具)产生同轴度误差。
⑶端部短锥和端面头部短锥C和端面D对主轴二个支承轴颈A、B的径向圆跳动公差为0.008mm;表面粗糙度Ra为0.8mm。
它是安装卡盘的定位面。
为保证卡盘的定心精度,该圆锥面必须与支承轴颈同轴,而端面必须与主轴的回转中心垂直。
⑷空套齿轮轴颈空套齿轮轴颈对支承轴颈A、B的径向圆跳动公差为0.015 mm。
由于该轴颈是与齿轮孔相配合的表面,对支承轴颈应有一定的同轴度要求,否则引起主轴传动啮合不良,当主轴转速很高时,还会影响齿轮传动平稳性并产生噪声。
⑸螺纹主轴上螺旋面的误差是造成压紧螺母端面跳动的原因之一,所以应控制螺纹的加工精度。
当主轴上压紧螺母的端面跳动过大时,会使被压紧的滚动轴承内环的轴心线产生倾斜,从而引起主轴的径向圆跳动。
2.1.4主轴加工的要点与措施主轴加工的主要问题是如何保证主轴支承轴颈的尺寸、形状、位置精度和表面粗糙度,主轴前端内、外锥面的形状精度、表面粗糙度以及它们对支承轴颈的位置精度。
主轴支承轴颈的尺寸精度、形状精度以及表面粗糙度要求,可以采用精密磨削方法保证。
磨削前应提高精基准的精度。
保证主轴前端内、外锥面的形状精度、表面粗糙度同样应采用精密磨削的方法。
为了保证外锥面相对支承轴颈的位置精度,以及支承轴颈之间的位置精度,通常采用组合磨削法,在一次装夹中加工这些表面,如图2-1所示。
机床上有两个独立的砂轮架,精磨在两个工位上进行,工位Ⅰ精磨前、后轴颈锥面,工位Ⅱ用角度成形砂轮,磨削主轴前端支承面和短锥面。
图2.1 组合磨削主轴锥孔相对于支承轴颈的位置精度是靠采用支承轴颈A、B作为定位基准,而让被加工主轴装夹在磨床工作台上加工来保证。
以支承轴颈作为定位基准加工内锥面,符合基准重合原则。
在精磨前端锥孔之前,应使作为定位基准的支承轴颈A、B达到一定的精度。
主轴锥孔的磨削一般采用专用夹具,如图3所示。
夹具由底座1、支架2及浮动夹头3三部分组成,两个支架固定在底座上,作为工件定位基准面的两段轴颈放在支架的两个V形块上,V形块镶有硬质合金,以提高耐磨性,并减少对工件轴颈的划痕,工件的中心高应正好等于磨头砂轮轴的中心高,否则将会使锥孔母线呈双曲线,影响内锥孔的接触精度。
后端的浮动卡头用锥柄装在磨床主轴的锥孔内,工件尾端插于弹性套内,用弹簧将浮动卡头外壳连同工件向左拉,通过钢球压向镶有硬质合金的锥柄端面,限制工件的轴向窜动。
采用这种联接方式,可以保证工件支承轴颈的定位精度不受内圆磨床主轴回转误差的影响,也可减少机床本身振动对加工质量的影响。
2.2划分加工阶段的理由(1)粗加工时切削余量大,切削力大,切削热及功率消耗都较大,因而工艺系统存在严重的受力变形、热变形及共建内应力变形,要由后续阶段逐步修正;(2)划分加工阶段可合理使用机床设备。
粗加工可采用功率大精度一般的机床设备,精加工用相应精度机床,既能发挥机床各自的性能特点,也延长了精密机床的使用寿命;(3)零件工艺过程中插入必要的热处理工序,这样工艺过程以热处理工序为界自然分为上述各阶段,各具不同的特点和目的。
如精密主轴加工中,在粗加工后进行时效处理去除应力,半精加工后进行淬火,精加工后进行冰冷处理及低温回火,最后再进行光整加工。
此外划分加工阶段还有两个好处:(1)粗加工后可及早发现毛坯缺陷,及时报废或修补,以免继续加工而造成浪费;(2)表面加工要安排在最后,可防止或减少碰坏损伤,只有在自动机床上加工的零件,往往不分阶段,棒料一次安装完成全部粗、精加工2.3工序划分的原则在车床上加工零件,常用的工序的划分原则有两种。