建筑结构形式剪力墙结构
简介
和研究表明这种降低幅度较小)。
框剪结构
主要特征
框架与剪力墙结构体系的结合
框剪结构的变形为剪弯型
众所周知,框架结构的变形是剪切型,上部层间相对变形小,下部层间相对变形大。
剪力墙结构的变形为弯曲型,上部层间相对变形
大,下部层间相对变形小。
对于框剪结构,由于两种结构协同工作变形协调,形成了弯剪变形,从而减小了结砍的层间相对位移比和顶点位移比,使结构的侧向刚度得到了提高。
水平荷载主要由剪力墙承受
综述
结构控制理论将结构的弹塑性分析与抗震相结合、抗震与消震相结合、能动控制与设计相结合,通过主动或被动的控制措施,调整结构的刚度、强度和质量分布,控制结构实现最佳耗能机构,以增大结构的延性和耗能能力,增强结构对地震作用下强迫变形的适应能力,使其满足抗震设防三水准要求。
抗震结构按两阶段设计,即在弹性阶段按强度控制,在弹塑性阶段按变形控制。
这样设计的结构,既有一定的强度,又具有较大的延性和耗能能力,能一定程度地适应强烈地震使结构产生的强迫变形。
?
提高剪力墙抗震性能?
提高框架的抗震性能
1、加强框架的角柱。
角柱是连结纵横框架的枢纽,要增加框架的空间整体性,就要加强角柱的抗剪性能。
2、沿周圈框架平面按K形支撑和X形支撑布置一定数量的钢筋砼抗剪墙板或配筋砌块抗剪墙板,能有效克服框架的剪力滞后现象,显著提高框架的整体性和抗推刚度,减少结构的整体侧移,特别有利于减小层间侧移。
但这种结构的延性较差,因此,可以在墙板上开十字形结构竖缝使之出现薄弱部
位,形成延性耗能墙板。
? 3、设置偏交斜撑等赘余杆件,用弯
采用新型复合材料节点?
提高节点的强度和延性仅靠增加箍筋效果并不显著,而采用钢纤维砼和劲性砼梁柱节点效果较好。
由于劲性钢材或钢纤维与砼的共同工作,使得节点区砼的受力性能特别是剪切变形大大改善,延性和耗能能力显著提高,同时提高整体结构的抗震性能: 1、实行机构控制,实现总体屈服机制。
在结构的特定位置设置一定数量的人工塑性铰,对塑性铰发生的区域、顺序及塑性程度进行控制,使得结构在强震时能形成最佳耗能机构。
在水平作用下,使水平构件先于竖向构件屈服,最后竖向构件底部屈服。
? 2、使结构的刚度和承载力相匹配。
在框剪结构中,如剪力墙数量多、厚度大,刚度自然也大,但会导致结构自振周期减小,总水平地震作用增大;反之刚度小,地震力也变小。
所以,要根据建筑的重要性、装修等级和设防烈度来综合这一对矛盾,以确定出结构的侧移限值,从而定出抗震墙的数量、厚度,做到既安全又经济。
? 3、)使结构的刚度和延性相匹配。
剪力墙和框架在刚度、弹性极限变形值和延性系数方面的差异使得框剪结构的抗震性能大打折扣,造成各构件不能同步协调地发挥材料抗力而出现先后破坏被各个击破的情况,大大降低了结构中各构件的利用效率和整体的抗震可靠度。
所以,协调各抗侧力构件的刚度和延性相匹配是工程设计中的一条重要抗震设计原则。
?
剪力墙和框架同步工作的途径
为了能够使剪力墙和框架同步工作,可采用: 带竖缝剪力墙。
竖缝剪力墙在水平力作用下所产生的侧移,不再是以墙体的剪切变形为主而是以并列柱的弯曲变形为主,原来墙面上的斜向裂缝被并列小柱上、下端的水平裂缝代替。
由于剪力墙的力学性能由剪切转变为弯曲,弹性极限侧移值加大,延性改善,弹塑性耗能增加,避免了普通抗震墙斜裂缝出现后的刚度严重退化。
采用较好的延性偏交支撑,主要构造是交叉直撑的交叉点处用拼接板、高强螺栓与阻尼材
料组成,在小震时,叉点处提供足够的强度和刚度,像普通直撑那样工作。
在强震时,上撑与下撑 (或左撑与右撑 )之间可相对滑动,导致刚度大大下降,可提高剪力墙和框架之间的协同工作能力。
?
框剪结构的抗震设计与计算
概述
在现行规范的抗震分析中采用协同工作计算法,即采用框架弹性刚度和剪力墙弹性刚度组成并联体结构模型,计算出结构弹性自振周期,按众值烈度计算弹性地震作用?F,并将F?按弹性刚度比值分配给框架和剪力墙。
该计算方法不能反映出因剪力墙开裂、刚度在局部发生突变而引起墙体转动给结构带来内力重分布,这样显然与实际情况有误差。
因此,有必要作调整。
?
框剪结构抗震计算的调整
1.在整体按弹性方法计算的基础上,允许个别构件、个别部位按弹塑性性质对刚度进行调整,也允许局部考虑塑性内力重分布进行计算。
2.据空间有限元程序分析结果:受拉墙肢刚度退化后,实际受压墙肢承受了90%的总剪力而受拉墙肢仅承受了10%,墙肢受剪严重不均匀。
为此对于一、二级抗震墙,受压墙肢的设计弯矩和剪力应乘以1.25,而受拉墙肢可降低10~20%。
?
3.加强连梁是改善墙肢应力分配不均的有效途径。
通过合理的结构布置,使连梁能够向各片墙肢传递更多轴向力,让各墙肢尽可能地平均分担重力而避免出现某墙肢全截面受拉的情况,从而也改善了墙肢承受剪力不均的状况。
框剪结构对连梁的设计要求
结论?
筒体结构
科技名词定义
中文名称:筒体结构
英文名称:tube structure
定义:由一个或多个竖向筒体(由剪力墙围成的薄壁筒或由密柱框架构成的框筒)组成的结构。
应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);工程结构(水利)(三级学科)
百科名片
筒体结构 tube structure特点
分类
筒体-框架结构
框筒结构
筒中筒结构
束筒结构
计算要点
筒体结构 tube structure
特点
分类
筒体结构分筒体-框架、框筒、筒中筒、束筒四种结构。
筒体-框架结构
框筒结构
筒中筒结构
中央为薄壁筒,外围为框筒组成的结构。
目前世界上层数最多的纽约世界贸
筒体结构建筑
易中心[1](110层,高412米,(见彩图[帝国大厦,1931年建成,保持高度纪录(378米,102层)达40年,综合地代表20世纪30年代][建筑科学技术的水平,位于美国纽约市])即采用这种结构。
中国目前最高的深圳国际贸易中心(52层,高160米,平面如图2a[筒中筒结构],(见彩图[深圳国际贸易中心滑升模板施工])和按地震烈度9度设防的北京中央彩色电视中心(24层,高107米,平面如图2b[筒中筒结构])也采用了这种结构。
在有些工程中还采用了三重筒、四重筒结构。
束筒结构
由若干个筒体并列连接为整体的结构(图3 [束筒结构])。
目前世界上最高的芝加哥西尔斯大厦采用了9个30×30米的框筒集束而成。
计算要点
筒体结构布置复杂,空间作用显著。
对称筒体结构可等效为平面框架进行近似分析;有时也可以将框筒或筒中筒结构等效为连续的实体筒而用弹性力学方法,有限条法或有限元法进行分析。
精确的计算方法是采用空间分析方法,用大型电子计算机求解。
这时,梁、柱作为空间杆件,节点有6个自由度;墙作为薄壁空间杆件,节点有7个自由度;采用楼板无限刚性假定消去一部分自由度后,建立位移法方程求出位移,计算杆件内力。
其计算程序比较复杂。
编辑本段正文
由密柱高梁空间框架或空间剪力墙所组成,在水平荷载作用下起整体空间作
筒体结构
用的抗侧力构件称为筒体(由密柱框架组成的筒体称为框筒;由剪力
筒体结构(图2)
用了这种结构。
在有些工程中还采用了三重筒、四重筒结构。
束筒结
筒体结构(图3)
为平面框架进行近似分析;有时也可以将框筒或筒中筒结构等效为连续的实体筒而用弹性力学方法,有限条法或有限元法进行分析。
精确的计算方法是采用空间分析方法,用大型电子计算机求解。
这时,梁、柱作为空间杆件,节点有6个自由度;墙作为薄壁空间杆件,节点有7个自由度;采用楼板无限刚性假定消去一部分自由度后,建立位移法方程求出位移,计算杆件内力。
其计算程序比较复杂。