ANSYS有限元网格划分的基本原则引言ANSYS中有两种建立有限元模型的方法:实体建模和直接生成。
使用实体建模,首先生成能描述模型的几何形状的几何模型,然后由ANSYS程序按照指定的单元大小和形状对几何体进行网格划分产生节点和单元。
对于直接生成法,需要手工定义每个节点的位置和单元的连接关系。
一般来说对于规模较小的问题才适于采用直接生成法,常见的问题都需要先通过实体建模生成几何模型,然后再对其划分网格生成有限元模型。
随着计算机性能的提高,分析模型的复杂性和规模都越来越大,而直接生成法也因其自身的局限性逐渐的被淘汰,所以正确的理解划分网格的目的和掌握划分网格的方法不论是对ANSYS的学习还是对二次开发都有重要的作用,尤其是当模型复杂度大,对模型的某些部分网格需要特殊处理时,这种对划分网格深度的理解作用更加明显。
2 常用高级网格划分方法随着ANSYS功能的越来越强大和计算机性能的飞速提高,有限元分析向着大型化、复杂化的方向发展,而划分网格的观念也需要逐渐从二维模型向三维模型上上转变。
这里主要描述三种常见的高级划分网格的方法,正确的理解和掌握这些划分网格的思想对于二次开发者来说非常的重要。
1)延伸网格划分延伸网格划分是指将一个二维网格延伸生成一个三维网格;三维网格生成后去掉二维网格,延伸网格划分的步骤大体包括:先生成横截面、指定网格密度并对面进行网格划分、拖拉面网格生成体网格、指定单元属性、拖拉、完成体网格划分、释放已选的平面单元。
这里通过一个延伸网格划分的简单例子来加深对这种网格划分的理解。
图1 延伸网格划分举例建立如图1所示的三维模型并划分网格,我们可以先建立z方向的端面,然后划分网格,通过拖拉的方法在z方向按照图中所示尺寸要求的三维模型,只需一部操作便能够完成从二维有限元模型到三维有限元模型的转化。
2)自由网格与映射网格划分映射网格划分和自由网格划分是ANSYS里最常用的两种网格划分方法。
自由网格是面和体网格划分时的缺省设置,生成自由网格比较容易主要步骤:a、导出 MeshTool 工具, 划分方式设为自由划分;b、推荐使用智能网格划分进行自由网格划分, 激活它并指定一个尺寸级别. 存储数据库。
c、按 Mesh 按钮开始划分网格,按拾取器中 [Pick All] 选择所有实体 (推荐)。
或使用命令 VMESH,ALL 或 AMESH,ALL。
映射网格划分由于面和体必须满足一定的要求,生成映射网格不如生成自由网格容易但能够生成更规则的有限元模型。
映射网格划分时实体模型必须满足以下条件:a、面必须包含 3 或 4 条线 (三角形或四边形);b、体必须包含4, 5, 或 6 个面 (四面体, 三棱柱, 或六面体);c、对边的单元分割必须匹配;d、对三角形面或四面体, 单元分割数必须为偶数。
自由网格映射网格图2 自由网格与映射网格3)层状网格划分层状网格划分主要应用于2D分析生成线性过渡的自由网格,这种方法广泛应用于有以下特点的模型:平行于边线方向的单元尺寸相当、垂直于边线方向的单元尺寸和数目急剧变化、当分析要求边界单元高精度。
效果图如图3。
图3层状网格效果图3 网格划分误差估计ANSYS通用后处理包含网格离散误差估计。
误差估计是依据沿单元内边界的应力或热流的不连续性,是平均与未平均节点应力间的差值。
误差估计主要有以下几个方法:•能量百分比误差 sepc•单元应力偏差 sdsg•单元能量偏差 serr•应力上、下限 smnb smxb能量百分比误差是对所选择的单元的位移、应力、温度或热流密度的粗略估计。
它可以用于比较承受相似载荷的相似结构的相似模型。
这个值的通常应该在10%以下。
如果不选择其他单元,而只选择在节点上施加点载荷或应力集中处的单元,误差值有时会达到50%或以上。
某一个单元的应力偏差是此单元上全部节点的六个应力分量值与此节点的平均应力值之差的最大值。
每个单元的另一种误差值是能量误差。
它与单元上节点应力差值有关的, 用于计算选择的单元的能量百分比误差。
应力上下限并不是估计实际的最高或最小应力。
它定义了一个确信范围。
如果没有其他的确凿的验证,就不能认为实际的最大应力低于 SMXB。
显示或列出的应力上下限包括:•估计的上限– SMXB;•估计的下限– SMNB。
4 本篇总结本篇主要讲述了网格划分的几种常见高级方法和ANSYS的网格划分误差估计方法,只简单描述,要了解更加详细的信息可以通过ANSYS的help-Modeling and Meshing Guide部分查阅。
ANSYS有限元网格划分的基本原则1 引言ANSYS有限元网格划分是进行数值模拟分析至关重要的一步,它直接影响着后续数值计算分析结果的精确性。
网格划分涉及单元的形状及其拓扑类型、单元类型、网格生成器的选择、网格的密度、单元的编号以及几何体素。
从几何表达上讲,梁和杆是相同的,从物理和数值求解上讲则是有区别的。
同理,平面应力和平面应变情况设计的单元求解方程也不相同。
在有限元数值求解中,单元的等效节点力、刚度矩阵、质量矩阵等均用数值积分生成,连续体单元以及壳、板、梁单元的面内均采用高斯(Gauss)积分,而壳、板、梁单元的厚度方向采用辛普生(Simpson)积分。
辛普生积分点的间隔是一定的,沿厚度分成奇数积分点。
由于不同单元的刚度矩阵不同,采用数值积分的求解方式不同,因此实际应用中,一定要采用合理的单元来模拟求解。
2 ANSYS网格划分的指导思想ANSYS网格划分的指导思想是首先进行总体模型规划,包括物理模型的构造、单元类型的选择、网格密度的确定等多方面的内容。
在网格划分和初步求解时,做到先简单后复杂,先粗后精,2D单元和3D单元合理搭配使用。
为提高求解的效率要充分利用重复与对称等特征,由于工程结构一般具有重复对称或轴对称、镜象对称等特点,采用子结构或对称模型可以提高求解的效率和精度。
利用轴对称或子结构时要注意场合,如在进行模态分析、屈曲分析整体求解时,则应采用整体模型,同时选择合理的起点并设置合理的坐标系,可以提高求解的精度和效率,例如,轴对称场合多采用柱坐标系。
有限元分析的精度和效率与单元的密度和几何形状有着密切的关系,按照相应的误差准则和网格疏密程度,避免网格的畸形。
在网格重划分过程中常采用曲率控制、单元尺寸与数量控制、穿透控制等控制准则。
在选用单元时要注意剪力自锁、沙漏和网格扭曲、不可压缩材料的体积自锁等问题ANSYS软件平台提供了网格映射划分和自由适应划分的策略。
映射划分用于曲线、曲面、实体的网格划分方法,可使用三角形、四边形、四面体、五面体和六面体,通过指定单元边长、网格数量等参数对网格进行严格控制,映射划分只用于规则的几何图素,对于裁剪曲面或者空间自由曲面等复杂几何体则难以控制。
自由网格划分用于空间自由曲面和复杂实体,采用三角形、四边形、四面体进行划分,采用网格数量、边长及曲率来控制网格的质量。
3 ANSYS网格划分基本原则3.1 网格数量网格数量的多少将影响计算结果的精度和计算规模的大小。
一般来讲,网格数量增加,计算精度会有所提高,但同时计算规模也会增加,所以在确定网格数量时应权衡两个因数综合考虑。
图1 位移精度和计算时间随网格数量的变化图1中的曲线1表示结构中的位移随网格数量收敛的一般曲线,曲线2代表计算时间随网格数量的变化。
可以看出,网格较少时增加网格数量可以使计算精度明显提高,而计算时间不会有大的增加。
当网格数量增加到一定程度后,再继续增加网格时精度提高甚微,而计算时间却有大幅度增加。
所以应注意增加网格的经济性。
实际应用时可以比较两种网格划分的计算结果,如果两次计算结果相差较大,可以继续增加网格,相反则停止计算。
在决定网格数量时应考虑分析数据的类型。
在静力分析时,如果仅仅是计算结构的变形,网格数量可以少一些。
如果需要计算应力,则在精度要求相同的情况下应取相对较多的网格。
同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。
在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,如果计算的模态阶次较高,则应选择较多的网格。
在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。
3.2 网格疏密网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。
在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。
而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。
这样,整个结构便表现出疏密不同的网格划分形式。
下面通过实例给出网格疏密对计算精度的影响。
图2 较粗网格的有限元模型图3 图2网格对应得环向应力云图图4 缺口处较细网格图5 较密网格所得的环向应力云图图2是中心带圆孔方板的对称模型,其网格划分反映了疏密不同的划分原则。
小圆孔附近存在应力集中,采用了比较密的网格。
板的四周应力梯度较小,网格分得较稀。
其中图3中在缺口处网格划分较疏;而图4种在缺口处的网格划分较密。
其应力计算结果:图4在缺口处的计算精度高于图2中的有限元模型计算得结果。
由此可见,不同的地方应该采用不同的网格划分。
因此,网格数量应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。
划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特性时则趋于采用较均匀的钢格形式。
这是因为固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。
同样,在结构温度场计算中也趋于采用均匀网格。
3.3 单元阶次许多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。
选用高阶单元可提高计算精度,因为高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构形状不规则、应力分布或变形很复杂时可以选用高阶单元。
但高阶单元的节点数较多,在网格数量相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。
图6 高阶单元的有限元网格图7 高阶单元的计算结果图6中的有限元模型采用了8节点的单元,图2中的单元采用了4节点的单元,从其计算结果中可以看出,高阶单元在应力集中处即使较粗糙的网格划分,也可以计算得到较精确的应力值。
因此,在有应力集中和刚度突变的地方,应该采用高阶单元来对其进行网格划分。
增加网格数量和单元阶次都可以提高计算精度。
因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数量,太多的网格并不能明显提高计算精度,反而会使计算时间大大增加。
为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。