当前位置:文档之家› 薄膜电容器与应用解读

薄膜电容器与应用解读


薄膜电容器用于直流母线旁路
对性能的要求
尽可能低的ESR 满足要求的电容量 满足要求的额定有效值电流和峰值电流
薄膜电容器用作缓冲与箝位
目的 对性能的要求
电容器用于箝位
电容器作为缓冲电容器
电容器用于准谐振与有源箝位
薄膜电容器用于谐振式变换器
目的:与电感共同实现谐振功能 对性能的要求:在相应频率下更够承受足 够的交流电压、电流
电容器的电压与频率的关系
电容器可承受的交流电压、电流与频率的 关系
薄膜电容器电压与频率的关系
当频率升高到一定程 度时,薄膜电容器允 许施加的电压将随频 率的升高而降低。
薄膜电容器电压与温度的关系
薄膜电容器在不同温度下可承受的交流电 压
电容量的变化与温度的关系
ESR、ESL与阻抗频率特性
dv/dt 、峰值电流、有效值电流
电容器的电流与dv/dt的关系:
dv iC C dt
当dv/dt为峰值时,对应的电流为峰值电流。 电容器允许的有效值电流受流过的电流在 ESR上的损耗限制
工作温度
不同的介质,电容器的最高工作温度不同。 一般来说,聚酯电容器的最高工作温度为 +125℃;聚丙烯电容器多为+85℃。
损耗因数与频率的关系
试验电压:电容器出厂前形式试验时对电 容器施加的电压,一般在1.5~2倍,持续时 间2分钟或500小时。 介电强度:电容器的介质所能承受的电压, 这个电压高于试验电压。
额定交流电压:电容器工作在交流电压下 可以连续施加的交流电压有效值。
额定交流电压与额定直流电压关系
在一般情况下,额定交流电压与额定直流 电压关系为:
薄膜电容器与应用
薄膜电容器
1876年英国D.斐茨杰拉德发明纸介电容器。 这就是薄膜电容器的始祖。 有机介质由于其性能优异而大量应用。 有机介质可以分为聚乙烯、聚苯乙烯、聚 四氟乙烯、聚丙烯、聚酯、聚碳酸酯、聚 酰亚胺、聚砜、聚苯硫醚、漆膜等。 对于电力电子线路来说,应用最多的是聚 酯电容器、聚丙烯电容器。
10 kW逆变器对电容量的要求与频率 的关系
滤波与平滑用薄膜电容器
滤波与平滑用电容器是用来平滑整流器输 出的电压、电流,在电压低于450V时通常 应用价格低廉的铝电解电容器,当电压高 于500V低于700V时仍可以应用铝电解电容 器串联的方式,但是在需要高可靠的场合 与电压高于1000V或更高时则应用薄膜电容 器作为滤波电容器为好。
薄膜电容器的特点
无极性 ESR极低 允许比较高的电流流过 工作电压可以很高 温度范围宽 基本上无寿命限制 金属化电极具有自愈功能
薄膜电容器的基本参数
额定直流电压、额定交流电压 电容量 ESR、ESL dv/dt、有效值电流、峰值电流 工作温度
额定直流电压、额定交流电压
额定直流电压:是在整个温度范围内允许 持续施加的直流电压。
如果直流电压1000V, 纹波电压200V
I rms :(P=1MW) = 2468Arms (P=500kW) = 1234Arms (P=100kW) = 247Arms
频率与电容量的关系
频率与电容来的关系低频部分
对电容量的要求(1)
为了方便比较,我们选择电流承受能力为 20mA每μF的电解电容 考虑到 0.2Arms/μF,有效值电流为2468A时, 需要的最小容值为123.4mF。对应图中曲 线的值,我们可以看到对频率低于100Hz的 整流器,使用膜电容,该容值同样是需要 的。
对电容量的要求(2)
因此,对于三相,六整流管的整流器,频 率为。我们可以看到对应 1MW的曲线,需 要18.5mF的容值。与电解电容相比,如使 用膜电容方案,体积几乎可以缩小4倍,同 时有更高的可靠型。
比较低的功率情况
在更低功率的情况下,同样能够给出相同 的结果 , 对于10kW的功率,虽然容值变得 很小,但是膜电容仍然是最好的解决方案。 甚至在100Hz整流器频率,只需要555μF的 电容,供电电压与纹波电压仍然与前面相 同。
谐振式变换器电路
LLC谐振式变换器 特点:低噪声
谐振式变换器
谐振式高频感应加热功率变换器
中频感应加热功率变换器
电路详见电力电子技术教材 特点: 为了降低成本、高输出功率,晶闸管逆变 器 为了获得更高的负载电流,采用并联谐振 方式 电容器的电流接近于负载电流
中频感应加热容器
特点: 电容量大 无功功率高 大电流 需要水冷
损耗因数与温度的关系
应用薄膜电容器需要注意的问题
应用条件: 工作电压状态 电压变化速率 流过电容器的有效值电流与峰值电流
薄膜电容器在电力电子线路中的主 要作用
旁路 缓冲与箝位 谐振 平滑与直流支撑 急剧放电 电源电磁干扰抑制
薄膜电容器用作旁路
目的: 降低直流母线阻抗; 吸收来自负载的纹波 电流,抑制直流母线 电压因负载突变而出 现的波动。
如果采用铝电解电容器
与电解电容比较: 以每μF 20 mA为例,为了承受80A有效值 电流,最小容值
实际上可能需要两只4000μF的电解电容器 并联
电容器在电网供电时平滑与旁路作用
实例
容值的确定应从电网频率比逆变器频率低 入手。使用下述等式确定容值:
流过电容的有效值电流为(近似表示式), 该电流没有考虑逆变器侧的电流
薄膜电容器实现平滑与直流支撑 功能
目的: 平滑整流后直流电压
旁路(吸收)逆变器的纹波电流,改善直 流母线电压质量
对性能的要求
膜电容特别适合这种应用。因为直流支撑 电容的主要标准是有效值电流的承受能力。
这意味着直流支撑电容能够以有效值电流 来设计
实例
以电瓶车为例, 要求的数据 工作电压: 120VDC 允许的纹波电压: 4VRMS 有效值电流: 80 ARMS @ 20 kHz 最小容值为 在膜电容中,很容易找到接近的容值。
电容器的交流电压与频率的关系
当交流电的频率很低时,流过电容器的电流也很 低,这是电容器所允许施加的交流电压为额定交 流电压。
随着频率的升高,流过电容器的电流增加。当流 过电容器的电流达到电容器的额定电流时,将不 允许继续增加电流。为了限制电流,需要电压降 额。
随着频率继续升高,电容器的介质损耗上升,由 于电容器所允许的损耗为一定值,介质损耗增加, 将要求ESR损耗降低,也就是说要进一步降低电 流有效值,来保证电容器的损耗为额定值。
相关主题