当前位置:文档之家› 磁粉检测论文

磁粉检测论文

磁粉检测技术原理与应用简析摘要:磁粉检测是无损检测的常规方法之一,从19世纪起就开始在实际中得到广泛应用。

磁粉检测是利用漏磁场吸附磁粉形成磁痕显示进行探伤,对铁磁性材料的近表面缺陷有较强的检测能力。

根据磁化方法等差异,磁粉检测技术又可分为多种不同形式。

随着现代科技的发展,磁粉检测技术在工程实践中必将发挥更大的作用。

关键词:磁粉检测,漏磁场,磁化,缺陷无损检测技术就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。

常用的无损检测方法有射线照相检验、超声检测、磁粉检测、液体渗透检测、涡流检测、声发射检测、热像/红外、泄漏试验、交流场测量技术、漏磁检验、远场测试检测方法等。

磁粉检测是五大常规无损检测技术之一,应用十分广泛。

磁粉检测的主要原理是利用铁磁性材料工件被磁化后,由于不连续性的存在,使工件表面和近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,在合适的光照下形成目视可见的磁痕,从而显示出不连续性的位置、大小、形状和严重程度。

磁粉检测的历史可以追溯到1868年,当时的英国人使用罗盘仪探查磁通以检测枪管上的不连续性。

在1874年罗盘仪的应用获得了美国专利。

1922年,美国人开始利用磁粉检测钢块表面的裂纹区域。

1928年,Forest利用同向磁化法研究油井钻杆裂纹失效。

1930年Forest 和助手成功将干磁粉应用于焊缝及各种工件的探伤。

1934年生产磁粉探伤设备和材料的美国磁通公司成立。

在1941年新型的荧光磁粉开始投入使用。

20世纪50年代初期,苏联科学家在大量试验的基础上,制定出了磁化规范,磁粉检测的应用步入系统化和规范化。

时至今日,磁粉检测技术已经十分成熟,成为重要的检测手段之一。

研究磁粉检测技术,首先要明确它的物理基础。

磁粉检测是磁场效应的一种应用。

磁场就是磁体或通电导体周围具有磁力作用的空间。

磁场的大小、方向和分布情况可以用磁力线表示。

磁力线是闭合的曲线,在磁体内由S极到N极,在磁体外由N极穿过空气进入S极。

磁力线总是由磁阻最小的路径通过。

不同的材料根据其被磁化的难易程度可以分为铁磁质、顺磁质和抗磁质。

铁磁性材料如铁、钴、镍等,在一定磁场强度下,会产生一定的磁力线密度。

磁导率越大,材料越易被磁化,其呈现的磁性也越强。

磁粉检测是利用漏磁场吸附磁粉形成磁痕显示进行探伤。

所谓漏磁场,就是铁磁性材料磁化后,在不连续处或磁路截面变化处,磁感应线离开和进入表面时形成的磁场。

漏磁场形成的原因,是由于空气的磁导率远远小于铁磁性材料的磁导率。

如果在磁化了的工件上存在不连续性或裂纹,则磁感应线优先通过磁导率高的工件,这就迫使部分磁感应线从缺陷下面绕过,形成磁感应线的压缩。

但是,工件上这部分可容纳的磁感应线数目也是有限的,又由于同性磁感应线相斥,所以部分磁感应线从不连续中穿过,另一部分磁感应线遵循折射定律几乎垂直从工件表面进入空气中绕过缺陷又折回工件,形成了漏磁场。

漏磁场可分解为水平分量Bx和垂直分量By,水平分量与工件表面平行,垂直分量与工件表面垂直。

假设有一矩形缺陷,则在矩形中心漏磁场的水平分量有极大值并左右对称,而垂直分量为通过中心点的曲线。

如果将两个分量合成,就得到了缺陷的漏磁场。

漏磁场对磁粉的吸附可看成是磁极的作用,如果有磁粉在磁极区通过,则将被磁化,呈现出N极和S极,并沿着磁感应线排列起来。

当磁粉的两极和漏磁场的两极相互作用时,磁粉就会被吸附并加速移动到缺陷上去。

漏磁场的磁力作用在磁粉微粒上,其方向指向磁感应线最大密度区,即指向缺陷处。

由于漏磁场的宽度要比缺陷实际的宽度大数倍至数十倍,所以磁痕对缺陷宽度具有放大的作用,可以将目视不可见的缺陷转变为目视可见的磁痕使之容易观察出来。

由上可知,漏磁场的大小对检测效果有重要影响,那么存在哪些影响漏磁场的因素呢?首先,漏磁场的大小与工件的磁化程度有关。

一般来说外加磁场强度一定要大于产生最大磁导率Um对应的磁场强度Hum,使磁导率减小,磁阻增大,漏磁场增大。

当铁磁性材料的磁感应强度达到饱和值的80%左右时,漏磁场便会迅速增大。

其次,缺陷的位置和形状对漏磁场也会产生重要影响。

同样的缺陷,位于工件表面处时,产生的漏磁场大;若位于工件的近表面,漏磁场将显著减小;若位于工件表面很深处,则几乎没有漏磁场泄漏出工件表面。

缺陷垂直于磁场方向时漏磁场最大,当角度逐渐减小时漏磁场以近似正弦曲线的形式减小直至为零。

缺陷的深宽比是缺陷形状影响漏磁场的另一因素。

深宽比越大,漏磁场也越大,缺陷越容易被发现。

另外,工件表面覆盖层以及工件的材料和状态(如晶粒大小、含碳量、热处理、冷加工、合金元素等)也会对漏磁场的大小产生影响。

根据上述检测原理,可以总结出磁粉检测的基本特点和适用范围。

这种方法适用于检测铁磁性材料表面和近表面缺陷,例如表面和近表面间隙极窄的裂纹和目视难以看出的其他缺陷,但不适合检测埋藏较深的内部缺陷;适用于检测铁镍基铁磁性材料如马氏体不锈钢和沉淀硬化不锈钢材料,但不适用于检测非磁性材料如奥氏体不锈钢材料;适用于检测未加工的原材料(如钢坯)和加工的半成品、成品件及在役与使用过的工件;适用于检测管材棒材板材形材和锻钢件铸钢件及焊接件;适用于检测工件表面和近表面的延伸方向与磁力线方向尽量垂直的缺陷,但不适用于检测延伸方向与磁力线方向夹角小于20度的缺陷;适用于检测工件表面和近表面较小的缺陷,不适合检测浅而宽的缺陷。

作为无损检测的一种方法,磁粉检测能够在不破坏原检测工件的前提下实现缺陷的测量,操作简单方便,检测成本低。

但是它对被检测件的表面光滑度要求高,对检测人员的技术和经验要求高,检测范围小且检测速度慢。

磁粉检测的工艺过程主要分为选定磁化规范(包括试件磁化方法、磁粉施加方法及工艺参数)、预处理、磁化工件、施加磁粉或磁悬液、磁痕分析评定、退磁、后处理七大步骤。

确定磁化规范的方法通常可分为:①按试件表面的磁场强度Н的取值大小来确定磁化电流或安匝数;②按试件表面的磁感应强度В的取值大小来确定磁化电流或安匝数,或按试件的磁饱和时的磁感应强度来确定磁化规范;③按试件的形态及其上的人为缺陷情况确定磁化电流或安匝数。

对工件的预处理主要包括:1清除工件表面的油污、灰尘、铁锈、毛刺、氧化皮、油漆等保护涂层,以及其他能够影响灵敏的的物质;2用轴向通电法和触头法磁化时,为防止烧伤工件表面和提高导电性,必须将工件与电极接触部位的非导电覆盖层打磨掉;3装配件一般要进行分解后再探伤;4若工件有盲孔或内腔,当使用磁悬液检测流入难以清洗时,应先用非研磨性材料将孔洞封堵;5如果磁粉与工件表面颜色对比度小或工件表面粗糙不利于磁痕显示,应涂敷反差增强剂。

磁化工件是磁粉检测的一个重要步骤。

首先应根据情况选定磁化电流,常用的包括交流电、整流电、直流电和冲击电流等几种。

交流电有检测灵敏度高、容易退磁、磁场分布均匀、能够实现多向磁化、适合在役工件检验等优点,应用较为广泛,但探测缺陷深度较小,而且使用剩磁法检验时易受交流断电相位的影响。

整流电又有单相与三相、半波与全波之分,可以做到兼具直流的渗透性和交流的脉动性,剩磁稳定,但是退磁较为困难。

直流电是最早使用的一种方法,渗透性强,脉动性小,剩磁稳定,需要的输入功率小,但是退磁困难,退磁场大,工序复杂且不适宜干法检验,现在应用较少。

冲击电流是由电容器充放电获得,只能用于剩磁法,且仅适用于需要电流值特别大而常规设备又不能满足时,根据工件要求制作专用设备。

在磁化处理时,要根据工件的尺寸大小、外形结构和表面状态,以及工件过去断裂的情况和各部分的应力分布,分析可能产生的缺陷部位和方向,选择合适的磁化方法。

磁化方法有很多种。

在工件中建立一个环绕工件,并与工件轴垂直的周向的闭合磁场的方法称为周向磁化法,用于发现与工件轴平行的纵向缺陷,它又可细分为中心导体法、偏置芯棒法、通电法、触头法、感应电流法、环形件绕电缆法等。

将电流通过环绕工件的线圈,沿工件纵长方向进行磁化的方法称为纵向磁化法,主要用于发现与工件轴向垂直的周向缺陷,它又可细分为线圈法、磁轭法、永久磁轭法等。

对于一些常见类型的工件,焊接件、轴类零件、机加工件等适用于通电法磁化,有孔的工件如轴承圈、齿轮等适用于中心导体法磁化,某些大中型工件的局部检验适用于触头法磁化,薄壁环形工件适用于感应电流法磁化。

在施加磁粉的工艺中,根据磁化与检测时机的不同,在外加磁场磁化的同时将磁粉或磁悬液施加在工件上进行检测的方法称为连续法,而停止磁化后再进行检测的方法称为剩磁法。

根据检测所用的载体不同,选用磁悬液的方法称为湿法,而使用磁粉的方法称为干法。

干粉法检验对近表面缺陷的检出能力高,特别适于大面积或野外探伤,湿粉法检验对表面的细小缺陷检出能力高,特别适于不规则形状的小型零件的批量探伤。

根据硫化硅橡胶液内配或不配磁粉,又可分为磁橡胶法和橡胶铸型法。

磁痕的分析评定是磁粉检测的关键步骤。

缺陷磁痕按性质大体上可分为三类:裂纹磁痕和发纹磁痕、点状夹渣、气孔磁痕。

各种磁痕的特征是:①锻造折叠和锻造裂纹:磁痕聚集较浓呈孤形或曲线状,多出现在尺寸突变或易过热部位;②淬火裂纹磁痕形状清晰、尾部尖锐,有时呈辐射状分布,多发生在零件应力集中的部位;③磨削裂纹:一般呈网状或平行线状,有的还会出现龟裂磁痕;④焊接裂纹:磁痕多弯曲呈鱼尾状;⑤铸造裂纹:在应力大的部位裂开,磁痕较宽;⑥疲劳裂纹:裂纹以疲劳源为起点向两侧发展,呈曲线状;⑦白点:磁痕密集分布,常见于大厚截面的中心处,呈无规律的较短线状;⑧发纹:磁痕沿金属纤维方向呈直线或微弯的形状;⑨点状或片状的夹杂与气孔,一般是以单个或密集的点状或片状出现。

根据磁痕的特征就可以判断出缺陷的位置和种类,便于对工件的后续处理。

最后的工艺过程就是退磁。

将工件置于交变磁场中,产生磁滞回线,当交变磁场的幅值逐渐递减时,磁滞回线的轨迹也越来越小,常用的方法有交流电退磁、直流电退磁和加热法退磁。

磁粉检测是一种发展前景广阔的技术,随着科技的发展必将得到愈加广泛的应用。

掌握磁粉检测技术的原理和方法,是科学和社会进步对测控专业学生的要求,必须要学以致用,学有所为。

参考文献:【1】李家伟.无损检测手册[M].北京:机械工业出版社,2002.【2】李路明.提高漏磁检测量化精度的研究[D].北京:清华大学,1996.【3】叶代平,苏李广.磁粉检测[M].北京:机械工业出版社,2004【4】李丽茹.表面检测—磁粉,渗透与涡流[M].北京:机械工业出版社,2009【5】邓红军.无损检测实训[M].北京:机械工业出版社,2010.【6】Dwards CE,Palmer SB.The magnetic leakage field of surface breaking cracks[J].J Phys D:Apply Phys,1986,19(4):657-673.【7】Atherton D,Hauge C.Line pressure stress affects MFL signals[J].Oil Gas J,1996,18(3):92-99。

相关主题