当前位置:文档之家› 北京四中数学必修四平面向量应用举例基础版

北京四中数学必修四平面向量应用举例基础版

平面向量应用举例编稿:丁会敏 审稿:王静伟【学习目标】1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题.3.体会用向量方法解决实际问题的过程,知道向量是一种处理几何、物理等问题的工具,提高运算能力和解决实际问题的能力.【要点梳理】要点一:向量在平面几何中的应用向量在平面几何中的应用主要有以下几个方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量减法的意义.(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常运用向量平行(共线)的条件://λ⇔=a b a b (或x 1y 2-x 2y 1=0).(3)证明线段的垂直问题,如证明四边形是矩形、正方形,判断两直线(线段)是否垂直等,常运用向量垂直的条件:0⊥⇔⋅=a b a b (或x 1x 2+y 1y 2=0).(4)求与夹角相关的问题,往往利用向量的夹角公式cos ||||θ⋅=a b a b . (5)向量的坐标法,对于有些平面几何问题,如长方形、正方形、直角三角形等,建立直角坐标系,把向量用坐标表示,通过代数运算解决几何问题.要点诠释:用向量知识证明平面几何问题是向量应用的一个方面,解决这类题的关键是正确选择基底,表示出相关向量,这样平面图形的许多性质,如长度、夹角等都可以通过向量的线性运算及数量积表示出来,从而把几何问题转化成向量问题,再通过向量的运算法则运算就可以达到解决几何问题的目的了.要点二:向量在解析几何中的应用在平面直角坐标系中,有序实数对(x ,y )既可以表示一个固定的点,又可以表示一个向量,使向量与解析几何有了密切的联系,特别是有关直线的平行、垂直问题,可以用向量方法解决.常见解析几何问题及应对方法:(1)斜率相等问题:常用向量平行的性质.(2)垂直条件运用:转化为向量垂直,然后构造向量数量积为零的等式,最终转换出关于点的坐标的方程.(3)定比分点问题:转化为三点共线及向量共线的等式条件.(4)夹角问题:利用公式cos ||||θ⋅=a b a b . 要点三:向量在物理中的应用(1)利用向量知识来确定物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题,即将物理问题抽象成数学模型;另一方面是如何利用建立起来的数学模型解释相关物理现象.(2)明确用向量研究物理问题的相关知识:①力、速度、位移都是向量;②力、速度、位移的合成与分解就是向量的加减法;③动量mv 是数乘向量;④功即是力F 与所产生位移s 的数量积.(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量运算解决问题;三是把结果还原为物理结论.【典型例题】类型一:向量在平面几何中的应用例1.用向量法证明:直径所对的圆周角是直角.已知:如下图,AB 是⊙O 的直径,点P 是⊙O 上任一点(不与A 、B 重合),求证:∠APB =90°.证明:联结OP ,设向量b OP a OA =→=→,,则a OB -=→且b a OP OA PA -=→-→=→,OP OB PB --=→-→=→0||||2222=-=-=→⋅→∴a b a b PB PA→⊥→∴PB PA ,即∠APB =90°.【总结升华】解决垂直问题,一般的思路是将目标线段的垂直转化为向量的数量积为零,而在此过程中,则需运用向量运算,将目标向量用基底表示,通过基底的数量积运算式使问题获解,如本题便是将向量PA ,PB 由基底a ,b 线性表示.当然基底的选取应以方便运算为准,即它们的夹角是明确的,且长度易知.举一反三:【高清课堂:平面向量的应用举例395486 例1】【变式1】P 是△ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是△ABC 的( )A .外心B .内心C .重心D .垂心【答案】D【高清课堂:平面向量的应用举例395486 例4】【变式2】已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________;DE DC ⋅的最大值为________.【解析】||||cos ,DE CB DE DA DE DA DE DA ⋅=⋅=⋅〈〉=2||||||DA DA DA ⋅==1 ||||cos ,DE DC DE DC DE DC ⋅=⋅〈〉=||||cos DE DC EDC ⋅∠42EDC ππ⎛⎫≤∠≤⎪⎝⎭ =||cos DE EDC ∠=||DF (F 是E 点在DC 上的投影)1≤当F 与C 点重合时,上式取到等号.例2.如图所示,四边形ADCB 是正方形,P 是对角线DB 上一点,PFCE 是矩形,证明:PA EF ⊥.【思路点拨】如果我们能用坐标表示PA 与EF ,则要证明结论,只要用两向量垂直的充要条件进行验证即可.因此只要建立适当的坐标系,得到点A 、B 、E 、F 的坐标后,就可进行论证.【解析】以点D 为坐标原点,DC 所在直线为x 轴建立如图所示坐标系,设正方形的边长为1,||DP λ=,则)1,0(A ,)22,22(λλP ,)22,1(λE ,)0,22(λF , 于是22(,1)22PA λ=--,22(1,)22EF λλ=--, ∵2222()(1)(1)()2222PA EF λ⋅=-⋅-+-⋅- 0022)221122(22=⨯-=-+-⋅-=λλλλ ∴PA EF ⊥.举一反三:【变式1】在平面直角坐标系xOy 中,已知点A (―1,―2),B (2,3),C (―2,―1).(1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅=,求t 的值.【答案】(1)4210(2)115- 【解析】 (1)由题设知(3,5)AB =,(1,1)AC =-,则(2,6)AB AC +=,(4,4)AB AC -=. 所以||210AB AC +=||42AB AC -= 故所求的两条对角线长分别为4210P Fyx E D C BA O(2)由题设知(2,1)OC =--,(32,5)AB tOC t t -=++.由()0AB tOC OC -⋅=,得(3+2t ,5+t)·(―2,―1)=0,从而5t=―11,所以115t =-. 类型二:向量在解析几何中的应用 例3.已知圆C :(x-3)2+(y-3)2=4及定点A (1,1),M 为圆C 上任意一点,点N 在线段MA 上,且 2MA AN =,求动点N 的轨迹方程.【思路点拨】设出动点的坐标,利用向量条件确定动点坐标之间的关系,利用M 为圆C 上任意一点,即可求得结论.【答案】x 2+y 2=1【解析】设N (x ,y ),M (x 0,y 0),则由2MA AN =得(1―x 0,1―y 0)=2(x ―1,y ―1),∴00122122x x y y -=-⎧⎨-=-⎩,即003232x x y y=-⎧⎨=-⎩.代入(x ―3)2+(y ―3)2=4,得x 2+y 2=1.【总结升华】本题考查轨迹方程,解题的关键是利用向量条件确定动点坐标之间的关系,属于中档题.举一反三:【变式1】已知△ABC 的三个顶点A (0,―4),B (4,0),C (―6,2),点D 、E 、F 分别为边BC 、CA 、AB 的中点.(1)求直线DE 、EF 、FD 的方程;(2)求AB 边上的高CH 所在直线的方程.【答案】(1)x ―y+2=0,x+5y+8=0,x+y=0(2)x+y+4=0【解析】 (1)由已知得点D (―1,1),E (―3,―1),F (2,―2),设M (x ,y )是直线DE 上任意一点,则//DM DE .(1,1)DM x y =+-,(2,2)DE =--.∴(-2)×(x+1)―(―2)(y ―1)=0,即x ―y+2=0为直线DE 的方程.同理可求,直线EF ,FD 的方程分别为 x+5y+8=0,x+y=0.(2)设点N (x ,y )是CH 所在直线上任意一点,则CN AB ⊥.∴0CN AB ⋅=.又(6,2)CN x y =+-,(4,4)AB =.∴4(x+6)+4(y ―2)=0,即x+y+4=0为所求直线CH 的方程.【总结升华】(1)利用向量法来解决解析几何问题,首先要将线段看成向量,再把坐标利用向量法则进行运算.(2)要掌握向量的常用知识:①共线;②垂直;③模;④夹角;⑤向量相等则对应坐标相等.类型三:向量在物理学中“功”的应用例4.一个物体受到同一平面内三个力F 1,F 2,F 3的作用,沿北偏东45°的方向移动了8 m ,其中|F 1|=2 N ,方向为北偏东30°;|F 2|=4 N ,方向为北偏东60°;|F 3|=6 N ,方向为北偏西30°,求合力F 所做的功.【答案】246【解析】 以物体的重心O 为原点,正东方向为x 轴的正半轴建立直角坐标系.如图,则1(1,3)F =,2(23,2)F =,3(3,33)F =-, 则123(232,243)F F F F =++=-+.又位移(42,42)s =,合力F 所做的功为(232)42(243)424263246W F s =⋅=-⨯++⨯=⨯=(J ).∴合力F 所做的功为246J .【总结升华】用向量的方法解决相关的物理问题,要将相关物理量用几何图形表示出来,再根据它的物理意义建立数学模型,将物理问题转化为数学问题求解,最后将数学问题还原为物理问题.举一反三:【变式1】已知一物体在共点力12(2,2),(3,1),F F ==的作用下产生位移13(,)22s =,则共点力对物体所做的功为( )A 、4B 、3C 、7D 、2【答案】C【解析】对于合力()5,3F =,其所做的功为59722W F S =⋅=+=.因此选C.类型四:向量在力学中的应用例5.如图,用两条同样长的绳子拉一物体,物体受到重力为G .两绳受到的拉力分别为F 1、F 2,夹角为θ.(1)求其中一根绳子受的拉力|F 1|与G 的关系式,用数学观点分析F 1的大小与夹角θ的关系;(2)求F 1的最小值;(3)如果每根绳子的最大承受拉力为|G|,求θ的取值范围.【答案】(1)θ增大时,|F 1|也增大(2)||2G (3)[0°,120°]【解析】(1)由力的平衡得F 1+F 2+G=0,设F 1,F 2的合力为F ,则F=―G ,由F 1+F 2=F 且|F 1|=|F 2|,|F|=|G|,解直角三角形得111||||2cos 2||2||F G F F θ==,∴1||||2cos 2G F θ=,θ∈[0°,180°],由于函数y=cos θ在θ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos 2θ逐渐减小,即||2cos 2G θ逐渐增大,∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为||2G .(3)由题意,1||||||2G F G ≤≤,∴11122cos 2θ≤≤,即1cos 122θ≤≤.由于y=cos θ在[0°,180°]上为减函数,∴0602θ︒≤≤︒,∴θ∈[0°,120°]为所求.【总结升华】生活中“两人共提一桶水,夹角越大越费力”,“在单杠上做引体向上,两臂的夹角越小就越省力”等物理现象,通过数学推理与分析得到了诠释. 举一反三: 【变式1】两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N ,则当它们的夹角为0120时,合力的大小为( )A 、40NB 、102NC 、202ND 、10N【思路点拨】力的合成关键是依平行四边形法则,求出力的大小,然后再结合平行四边形法则求出新的合力.【解析】对于两个大小相等的共点力12,F F ,当它们间夹角为090时,合力的大小为20N时,这二个力的大小都是102N ,对于它们的夹角为0120时,由三角形法则,可知力的合成构成一个等边三角形,因此合力的大小为102N. 正确答案为B.【总结升华】力的合成可用平行四边形法则,也可用三角形法则,各有优点,但实质是相通的,关键是要灵活掌握;对于第一个平行四边形法则的应用易造成的错解是110F N =,这样就会错选答案D.类型五:向量在速度中的应用例6.在风速为75(62)-km / h 的西风中,飞机以150 km / h 的航速向西北方向飞行,求没有风时飞机的航速和航向.【思路点拨】这是航行中的速度问题,速度的合成与分解相当于向量的加法与减法,处理的方法和原则是三角形法则或平行四边形法则.【答案】1502,北偏西60°【解析】设风速为ω,飞机向西北方向飞行的速度为v a ,无风时飞机的速度为v b ,则如图,v b =v a -ω,设||||a AB v =,||||BC ω=,||||b AC v =,过A 点作AD ∥BC ,过C 作CD ⊥AD 于D ,过B 作BE ⊥AD 于E ,则∠BAD=45°,||150AB =,||75(62)BC =-.所以||||||752CD BE EA ===,||756DA =.从而||1502AC =,∠CAD=30°.所以没有风时飞机的航速为1502km / h ,航向为北偏西60°.【总结升华】本题主要考查向量在物理学中的应用.此类问题一般采用向量加法、减法的平行四边形法则和三角形法则来解决,注意画图辅助思考.举一反三:【变式1】一艘船从A点出发以23/km h的速度向垂直于对岸的方向行驶,同时河水流速为2/km h,求船实际航行的速度的大小与方向.【解析】如图所示,由向量的三角形法则知,对于v=水2/km h,v=船23/km h,得4124v=+=船实际/km h,方向为逆水流与水流成030夹角.【总结升华】对于船的航行问题关键是要注意运用向量的合成法则进行,当然要特别注意“船的实际航速和航向”和“船在静水中的航速和航向。

相关主题