当前位置:文档之家› 硅薄膜材料

硅薄膜材料


使光气体分子激发发光,形成阴极辉区。其中没有和
气体分子用的电子被进一步加速,再与气体分子作 用时,产生大量的离子和低速电子,并没有发 光,造成克鲁克斯暗区。而克鲁克斯暗区形成 的大量低速电子被加速后,又和气体分子用, 促使它激发发光,形成负辉光区。对于阳极近 区域,情况亦然。在两电极的中间存在一个明 显的发光区域,称为正离子柱区(或阳极光柱 区),在这个区域中,电子和正离子基本满足 电中性条件,处于等离子状态。如果适当调整
7.1.1非晶硅薄膜的特征及基本性质
非晶硅薄膜具有制备工艺简单、成本低和可大面 积连续生产的优点。
非 1 材料和制备工艺成本低 晶 硅 2 易于形成大规模生产能力 薄 膜 3 多品种和多用途 优 点 4 易实现柔性电池
与晶体硅相比,薄膜非晶硅具有如下的基本特征 和性质
1)晶体的原子是在三维空间上周期性的有规则
显示连续的无规则的网络结构。
3)
单晶硅的物理特性是各向异性,即在各个晶向方
向其物理特性有微小的差异,而多晶硅、微晶硅、
纳米硅的晶向呈多向性,所以,其物理特性是各
向同性,非晶硅的结构决定了它的物理性质也是
4)从能带结构上看,非晶硅不仅具有导带、价带和禁 带,而且具有导带尾带、价带尾带,其缺陷在能带中 引入的缺陷能级比晶体硅中显著,有大量的悬挂键, 会在禁带中引入深能级,取决于非晶硅结构的无序程 度。其电子输运性质出现了跃迁导电机制,电子和空 穴的迁移率很小,对电子而言,只有1cm2 /Vs,对空 穴而言,约0.1cm2 /Vs。室温下,非晶硅薄膜的电阻率 高。 5) 晶体硅是间接带隙结构,而非晶硅是直接带隙结构, 所以光吸收率大。而且,禁带宽度也不是晶体硅的
常通过非晶硅的晶化而来。
(a)非晶 (b)单晶 (c)多晶 图7-1 单晶、多晶与非晶的区别
7.1.2 非晶硅薄膜的制备
制备非晶硅所要求的条件原则上比制备多晶硅 低。非晶硅材料与晶体材料不同之处在于它的原子 结构排列不是长程有序。例如,非晶硅的硅原子通 常与四个其他硅原子连接,连接键的角度和长度通 常与晶体硅的相类似,但小的偏离迅速导致长程有 序的排列完全丧失。单体的非晶硅本身并不具有任 何重要的光伏性质。如果没有周期性的束缚力,则 硅原子很难与其他四个原子键合。这使材料结构中 由于不饱和或“悬挂”键而出现微孔。再加上由于 原子的非周期性排列,增加了禁带中的允许态密度, 结果就不能有效地掺杂半导体或得到适宜的载流子 寿命。
1.12eV,而是1.5eV,并且在一定程度上可调。
6)在一定范围内,取决于制备技术,通过改变掺杂剂 和掺杂浓度,非晶硅的密度、电导率、禁带等性质可 以连续变化和调整,易于实现新性能的开发和优化。
7)非晶硅比晶体硅具有更高的晶格势能,因此在热力学 上是处于亚稳状态,在合适的热处理条件下,非晶硅可以 转化为多晶硅、微晶硅和纳米硅。实际上,后者的制备常
陷。
这就减少了禁带内的态密度,并允许材料进行掺
杂。非晶硅的制备需要很快的冷却速度,一般要大于 105℃/s,所以,其制备通常用气相沉积技术,如:等 离子增强化学气相沉积(PE-CVD)、溅射气相沉积 (SP-CVD )、光化学气相沉积(photo-CVD)和热 丝化学气相沉积(HW-CVD)等。而最常用的技术是 等离子增强化学气相沉积技术,即辉光放电分解气相

非晶硅薄膜太



多晶硅薄膜电池
7.1非晶硅薄膜材料
非晶硅是重要的薄膜半导体材料,它具有独特的 物理性能,可以大面积加工,因为太阳能光电材 料已经在工业界广泛应用,它还在大屏幕液晶显 示、传感器、摄像管等领域有重要的应用。非晶 硅薄膜电池材料是硅和氢的一种合金,是一种资 源丰富和环境安全的材料。一般利用化学气相沉 积技术,通过硅烷等气体的热分解,在廉价的衬 底上沉积而成。它具有备注方法简单、工艺成本 低、制备温度低、可以大面积的制备等优点,已 经在太阳电池上 大规模应用。
图 7-2 非晶硅结构示意图
图中表明悬挂键是怎样产生以及怎样被氢钝化,然而, 1975 年报导了由辉光放电分解硅烷(SiH4)产生的非晶 硅膜可以掺杂形成P-N 结。此膜中含有氢(SiH4 分解 时所产生的),在材料总原子数中占有相当的比例(5~
10%)。一般认为氢的作用是如图7-2 所示那样填补了膜内部微孔中的悬挂键及其他结构缺
的重复排列,具有原子长程有序的特点,而非晶
硅的原子在数纳米甚至更小的范围内呈有限的短
程周期性的重复排列,但从长程结构来看,原子
排列是无序的。如图7-1 所示。
2)晶体硅是由连续的共价键组成,而非晶硅虽
然也是由共价键组成,价电子被束缚在共价键中,
满足外层8 个电子稳定结构的要求,而且每一个
原子具有4 个共价键,呈四面体结构,但共价键
提纲
7.1非晶硅薄膜材料 7.1.1非晶硅薄膜的特征及基本性质 7.1.2非晶硅薄膜的制备 7.1.3非晶硅薄膜的缺陷及钝化 7.2多晶硅薄膜材料 7.2.1多晶硅薄膜的特征和基本性质 7.2.2多晶硅薄膜的基本制备 7.2.3多晶硅薄膜的晶界和缺陷
硅材料最重要的形式是硅单晶,在微电子工业和
太阳能光伏工业已经广泛应用,受单晶硅材料价 格和单晶硅电池制备过程的影响,降低单晶硅太 阳电池成本是非常困难的,发展了薄膜太阳电池 产品来替代单晶硅电池。
沉积技术。
圈7-3 辉光放电系统的I-V 特性曲线
图 7-4 辉光放电系统的辉光区示意图
(1)辉光放电的基本原理在真空系统中通入稀薄气 体,两电极之间将形成放电电流从而产生辉光放电现 象。图7-3 是辉光放电系统中的I-V 特性曲线,其曲线 可以分为汤森放电、前期放电、正常放电、异常放电、 过渡区和电弧放电等几个阶段。其中能实现辉光放电 功能的是具有恒定电压的正常辉光放电和具有饱和电 流的异常辉光放电。在实际工艺中,人们选择异常辉 光放电阶段辉光放电时,在两电极间形成辉光区,从 阴极到阳极,又可细分为阿斯顿暗区、阴极辉光、克 鲁克斯暗区、负辉光、法拉第暗区、正离子柱、阳极 暗区和阳极辉光等区域,如图7-4 所示。当电子从阴极 发射时,能量很小,只有1eV 左右,不能和气体分子 作用,在靠近阴极处形成阿斯顿暗区;随着电场的作 用,电子具有更高的能量,可以和气体分子作用,
相关主题