备战高考物理临界状态的假设解决物理试题(大题培优易错试卷)一、临界状态的假设解决物理试题1.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ=【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;2.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m3.如图甲,小球用不可伸长的轻绳连接绕定点O 在竖直面内圆周运动,小球经过最高点的速度大小为v ,此时绳子拉力大小为F ,拉力F 与速度的平方的关系如图乙所示,图象中的数据a 和b 以及重力加速度g 都为已知量,以下说法正确的是( )A.数据a与小球的质量有关B.数据b与小球的质量无关C.比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D正确.4.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T,则F T随ω2变化的图象是()A.B.C.D.【答案】C【解析】【分析】【详解】由题知小球未离开圆锥表面时细线与竖直方向的夹角为θ,用L表示细线长度,小球离开圆锥表面前,细线的张力为F T,圆锥对小球的支持力为F N,根据牛顿第二定律有F T sinθ-F N cosθ=mω2L sinθF T cosθ+F N sinθ=mg联立解得F T=mg cosθ+ω2mL sin2θ小球离开圆锥表面后,设细线与竖直方向的夹角为α,根据牛顿第二定律有F T sinα=mω2L sinα解得F T=mLω2故C正确。
故选C。
5.中国已进入动车时代,在某轨道拐弯处,动车向右拐弯,左侧的路面比右侧的路面高一些,如图所示,动车的运动可看作是做半径为R的圆周运动,设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L,已知重力加速度为g,要使动车轮缘与内、外侧轨道无挤压,则动车拐弯时的速度应为()A.gRhLB.gRhdC.2gRD.gRdh【答案】B【解析】【详解】把路基看做斜面,设其倾角为θ,如图所示当动车轮缘与内、外侧轨道无挤压时,动车在斜面上受到自身重力mg和斜面支持力N,二者的合力提供向心力,即指向水平方向,根据几何关系可得合力F=mg tanθ,合力提供向心力,根据牛顿第二定律,有mg tanθ=2 v mR计算得v tangRtanθ=h d带入解得v gRhdgRhd压,故B正确,ACD错误。
故选B。
6.如图所示,AB为竖直转轴,细绳AC和BC的结点C系一质量为m的小球,两绳能承担的最大拉力均为2mg。
当AC和BC均拉直时∠ABC=90°,∠ACB=53°,BC=1m.ABC能绕竖直轴AB匀速转动,因而C球在水平面内做匀速圆周运动.当小球的线速度增大时,两绳均会被拉断,则最先被拉断那根绳及另一根绳被拉断时的速度分别为(已知g=10m/s2,sin53°=0.8,cos53°=0.6)()A.AC绳 5m/s B.BC绳 5m/sC.AC绳 5.24m/s D.BC绳 5.24m/s【答案】B【解析】【分析】当小球线速度增大时,BC逐渐被拉直,小球线速度增至BC刚被拉直时,对小球进行受力分析,合外力提供向心力,求出A绳的拉力,线速度再增大些,T A不变而T B增大,所以BC绳先断;当BC绳断之后,小球线速度继续增大,小球m作离心运动,AC绳与竖直方向的夹角α增大,对球进行受力分析,根据合外力提供向心力列式求解。
【详解】当小球线速度增大时,BC逐渐被拉直,小球线速度增至BC刚被拉直时,根据牛顿第二定律得:对小球有T A sin∠ACB﹣mg=0 ①T A cos∠ACB+T B=2vml②由①可求得AC绳中的拉力T A=54mg,线速度再增大些,T A不变而T B增大,所以BC绳先断。
当BC绳刚要断时,拉力为T B=2mg,T A=54mg,代入②得225cos2 4v vmg ACB mg m mr l∠+==解得v=5.24m/s当BC线断后,AC线与竖直方向夹角α因离心运动而增大,当使球速再增大时,角α随球速增大而增大,当α=60°时,T AC=2mg,AC也断,则有T AC sin53°2sin 60AC v m L =︒代入数据解得v =5m/s故BC 线先断;AC 线被拉断时球速为5.0m/s . 故选B 。
【点评】解决本题的关键搞清向心力的来源,抓住临界状态的特点,运用牛顿第二定律进行求解.7.火车以速率1v 向前行驶,司机突然发现在前方同一轨道上距车s 处有另一辆火车,它正沿相同的方向以较小的速率2v 做匀速运动,于是司机立即使车做匀减速运动,该加速度大小为a ,则要使两车不相撞,加速度a 应满足的关系为( )A .()22122vv a s->B .212v a s>C .222v a s>D .()2122v v a s->【答案】D 【解析】 【详解】ABCD.设经过时间t 两车相遇,则有22112v t s v t at +=-整理得()221220at v v t s +-+=要使两车不相撞,则上述方程无解,即()221480v v as ∆=--<解得()2122v v a s->故D 正确ABC 错误。 故选D 。
8.在上表面水平的小车上叠放着上下表面同样水平的物块A 、B ,已知A 、B 质量相等,A 、B 间的动摩擦因数10.2μ=,物块B 与小车间的动摩擦因数20.3μ=。
小车以加速度0a 做匀加速直线运动时,A 、B 间发生了相对滑动,B 与小车相对静止,设最大静摩擦力等于滑动摩擦力,重力加速度g 取210m/s ,小车的加速度大小可能是( )A .22m/sB .22.5m/sC .23m/sD .24.5m/s【答案】BC 【解析】 【详解】以A 为研究对象,由牛顿第二定律得:μ1mg =ma 0,得:a 0=μ1g =2m/s 2,所以小车的加速度大于2m/s 2。
当B 相对于小车刚要滑动时静摩擦力达到最大值,对B ,由牛顿第二定律得:μ2•2mg -μ1mg =ma ,得a =4m/s 2,所以小车的加速度范围为2m/s 2<a ≤4m/s 2,故AD 错误,BC 正确。
故选BC 。
9.如图所示,光滑水平桌面上放置一个倾角为37°的光滑楔形滑块A ,质量为M =0.8kg 。
一细线的一端固定于楔形滑块A 的顶端O 处,细线另一端拴一质量为m =0.2kg 的小球。
若滑块与小球在外力F 作用下,一起以加速度a 向左做匀加速运动。
取g =10 m/s 2;s in 370=0.6;s in 530=0.8,则下列说法正确的是( )A .当a =5 m/s 2时,滑块对球的支持力为0 NB .当a =15 m/s 2时,滑块对球的支持力为0 NC .当a =5 m/s 2时,外力F 的大小为4ND .当a =15 m/s 2时,地面对A 的支持力为10N 【答案】BD 【解析】 【详解】设加速度为a 0时小球对滑块的压力等于零,对小球受力分析,受重力和拉力, 根据牛顿第二定律,有:水平方向:0cos37F F ma =︒=合, 竖直方向:sin37F mg ︒=,解得20413.3m/s 3a g == A.当205m/s a a =<时,小球未离开滑块,斜面对小球的支持力不为零,选项A 错误; B.当2015m/s a a =>时,小球已经离开滑块,只受重力和绳的拉力,滑块对球的支持力为零,选项B 正确;C.当25m/s a =时,小球和楔形滑块一起加速,由整体法可知:()5N F M m a =+=选项C 错误;D.当系统相对稳定后,竖直方向没有加速度,受力平衡,所以地面对A 的支持力一定等于两个物体的重力之和,即()10N N M m g =+=选项D 正确。
故选BD 。
10.如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4m ,最低点处有一小球(半径比r 小很多),现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v 0应当满足(g =10m/s 2)( )A .04v ≥m/sB .025v ≥C .025m/s 22m/s v ≤≤D .022v ≤m/s【答案】BD 【解析】 【分析】 【详解】小球不脱离圆轨道时,最高点的临界情况为2v mg m r=解得2v gr ==m/s根据机械能守恒定律得22011222mv mg r mv =⋅+解得025v=m/s故要使小球做完整的圆周运动,必须满足25v≥m/s;若不通过圆心等高处小球也不会脱离圆轨道,根据机械能守恒定律有212mgr mv=解得22v=m/s故小球不越过圆心等高处,必须满足22v≤m/s,所以要使小球不脱离圆轨道运动,v0应当满足25v≥m/s或22v≤m/s,AC错误,BD正确。