当前位置:文档之家› 数字电压表课程设计

数字电压表课程设计

单片机系统课程设计成绩评定表设计课题:数字电压表设计学院名称:. 学院专业班级: 111111学生姓名: 222222学号: 333333333 指导教师: 444444设计地点:5555设计时间:2013-12-16~2013-12-27指导教师意见:成绩:签名:年月日单片机系统课程设计课程设计名称:数字电压表设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:2013-12-16~2013-12-27单片机系统课程设计任务书学生姓名专业班级学号题目数字电压表设计课题性质工程设计课题来源自拟指导教师主要内容(参数)利用89C51单片机设计数字电压表,把电压模拟量输入A/D转换模块处理后输出相应被测电压的数字信号,通过数码管显示出来。

实现功能1对被测电压量的采集2通过A/D转换器将模拟量转换为数字量3通过89C51单片机驱动数码管显示出电压值任务要求(进度)第1-2天:熟悉课程设计任务及要求,查阅技术资料,确定设计方案。

第3-4天:按照确定的方案设计单元电路。

要求画出单元电路图,元件及元件参数选择要有依据,各单元电路的设计要有详细论述。

第5-6天:画各部分流程图,软件设计,编写程序。

第7-8天:实验室调试。

第9-10天:撰写课程设计报告。

要求内容完整、图表清晰、文理流畅、格式规范、方案合理、设计正确,篇幅合理。

主要参考资料[1] 张迎新.单片微型计算机原理、应用及接口技术(第2版)[M].北京:国防工业出版社,2004[2]伟福LAB6000系列单片机仿真实验系统使用说明书[3] 阎石.数字电路技术基础(第五版).北京:高等教育出版社,2006[4]王松武,于鑫《电子创新设计与实践》。

国防工业出版2005,112-114审查意见系(教研室)主任签字:年月日摘要:在电路设计中我们时常会用到电压表,过去大部分电压表还是模拟的,虽然精度较高但模拟电压表采用用指针式,里面是磁电或电磁式结构,所以响应较慢。

为适应许多高速信号领域目前已广泛使用数字电压表。

该系统采用AT89C52单片机作为控制核心,以ADC0808为数据采样系统,实现被测电压的数据采样;使用系列比较器检测输入电压的范围,并通过继电器阵列实现了输入量程的自动转换;使用共阴极数码管显示被测电压。

关键词: AT89C52单片机、电压检测、ADC0808模数转换1 概述1.1 研究背景数字电压表出现在上世纪50年代初,60年代末发张起来的电压测量仪表,简称DVM,它采用的是数字化测量技术,把连续的模拟量,也就是连续的电压值转变为不连续的数字量,加以数字处理然后通过显示器件显示。

这种电子仪表之所以出现,一方面是由于电子计算机的应用推广到系统的自动控制信号的实验领域,提出了各种被观测量或被控制量转换成数字量的要求,即为了实时控制和数据处理的要求;另一方面,也是电子计算机的发展,带动了脉冲数字电路技术的发展,为数字化仪表的出现提供了条件。

所以,数字化测量仪表的产生与发展与电子计算机的发展是密切相关的;同时,为革新电子测量中的烦琐与陈旧方式也促进了它的飞速发展。

如今,它又成为向智能化仪表发展的必要桥梁。

如今,数字电压表已经绝大部分取代了传统的模拟指针式电压表,因为传统的模拟指针式电压表功能单一,精度低,读数的时候非常不方便还经常出错,而采用单片机的数字电压表由于测量精度高,速度快,读数时也非常方便,抗干扰能力强,可扩展性强等优点已被广泛应用与电子和电工测量,工业自动化仪表,自动测量系统等领域。

显示出强大的生命力。

数字电压表最初是伺服步进电子管比较式,其优点是准确度比较高,但是采样速度较慢,体积重达几十公斤。

继之出现了谐波式电压表,它的速度方面稍有提高但准确度低,稳定性差,再后来出现了比较式仪表改进逐次渐进式结构,它不仅保持了比较是准确度高的优点,而且速度也有了很大的提高,但它有一缺点就是抗干扰能力差,很容易受到外界因素的影响,随后,在谐波式的基础上双引申出阶梯波式,它的唯一进步就是成本降低了,可是准确度,速度及抗干扰能力都未提高。

而数字电压表的发展已经非常成熟,就原理来讲,它从原来的一两种已经发展到多种,在功能上讲,它从测单一的参数发展到能测多种参数;从制作原件看,发展到集成电路,准确度已经有了很大的提高,精度已经达到1NV,读数速度达到每秒几目万次,而相对以前价格已经降低了很多。

前实现电压数字化测量的方法仍然是模—数(A/D)转换的方法。

数字电压表分类繁多,日常生活中一般根据原理的不同进行分类,大致分为:比较式,电压—时间变换式,积分式等。

在电量的测量中,电压,电流和频率是最基本的三个被测量,其中电压量的测量最经常。

而且随着电子技术的发展,更是需要经常测量高精度的电压,所以数字电压就成为必不可少的测量仪器。

另外,数字测量仪器具有读数准确方便,精度度高,误差小,灵敏度高,分辨率高,测量速度快等特点倍受用户亲睐,数字电压表的设计就基于这种需求发展起来。

本设计将用AD转换芯片ADC0808对模拟信号进行转换,AD转换芯片ADC0808的基准电压端,被测量电压输入端分别输入基准电压和被测电压。

AD 转换芯片ADC0808将被测量电压输入端所采集到的模拟电压信号转换成相应的数字信号。

然后再通过对单片机AT89SC52进行软件编程,使单片机按规定的时序采集这些数字信号,通过一定的算法计算算出被测量电压值,最后驱动数码管进行电压显示。

1.2 设计思想及基本功能简易数字电压表可以测量范围0至5伏范围内的8路输入电压值,并在4位LED数码管上轮流显示或选择显示。

其测量最小分辨率为0.02V。

本系统主要包括四大模块:数据采集模块、控制模块、显示模块、A/D转换模块。

绘制电路原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路。

在软件编程上,采用了汇编语言进行编程,开发了显示模块程序、通道切换程序、A/D转换程序。

实现功能1对被测电压量的采集;2通过A/D转换器将模拟量转换为数字量;3通过89C51单片机驱动数码管显示出电压值.2 总体方案设计2.1 方案选取方案1:选用单片机AT89C52和A/D转换芯片ADC0808实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。

缺点是价格稍贵;优点是转换精度高,且转换的过程和控制、显示部分可以控制。

方案2:选用专用转化芯片INC7107实现电压的测量和实现,用四位数码管显示出最后的转换电压结果。

缺点是精度比较低,内部电压转换和控制部分不可控制。

优点是价格低廉。

基于课程设计的要求和已经买有AT89C52芯片,我选用了:方案1。

2.2 系统框图将数据采集接口电路输入电压传入ADC0809数模转换元件,经转换后通过OUT1至OUT8与单片机P0口连接,把转换完的模拟信号以数字信号的信号的形式传给单片机,信号经过单片机处理从LED数码显示管显示。

P3实现通道选择,P2口接数码管位选,,P1接数码管,实现数据的动态显示。

如下图所示:2.3软硬件开发环境硬件选择:选择AT89C52作为单片机芯片,选用8段LED 数码管实现电压显示,利用ADC0808作为数模转换芯片,利用P0至P4的各个串口来进行不同设备间的连接,计算机进行汇编,ISIS 7 Professional 仿真器等。

软件开发环境: 用Protel99SE 软件画电路图 。

3 硬件电路设计3.1 电源电路设计 3.1.1 7805概述7805是我们最常用到的稳压芯片了,它的使用方便,用很简单的电路即可以输入一个直流稳压电源,它的输出电压为5v 。

7805引脚图 Vin 1G N D2Vout3U?VOLTREG其中1接整流器输出的+电压,2为公共地(也就是负极),3就是我们需要的正5V 输出电压了 。

3.1.2 电源电路T1C1C410uFVD3VD4VD5VD2VD1C20.33uFC30.1uF12378+-u1+-U+-u2+-U1基本参数: 输出电压:4.75-5.25V ;静态电流:4.2-8mA ;输出噪音电压:40uV ;纹波抑制比:78dB ;输出电阻:17m Ω;输出电压温度系数-1.1mV/°C ;3.2 晶振电路C130pFC2 30pF X1C RY ST AL<T EX T><T EX T>电路中的晶振即石英晶体震荡器。

由于石英晶体震荡器具有非常好的频率稳定性和抗外界干扰的能力,所以,石英晶体震荡器是用来产生基准频率的。

通过基准频率来控制电路中的频率的准确性。

同时,它还可以产生振荡电流,向单片机发出时钟信号。

晶振电路用于产生单片机工作所需的时钟信号,使用晶体震荡器时,c2,c3取值20~40PF,使用陶瓷震荡器时c2,c3取值30~50PF。

在设计电路板时,晶振和电容应尽量靠近芯片,以减小分布电容,保证震荡器的稳定性。

18引脚接XTAL1,19引脚接XTAL2,20引脚接地。

XTAL1接外部晶体的一个引脚,XTAL2接外晶体的另一端。

在单片机内部,接至上述振荡器的反相放大器的输出端。

采用外部振荡器时,对HMOS单片机,该引脚接外部振。

在石英晶体的两个管脚加交变电场时,它将会产生一定频率的机械变形,而这种机械振动又会产生交变电场,上述物理现象称为压电效应。

一般情况下,无论是机械振动的振幅,还是交变电场的振幅都非常小。

但是,当交变电场的频率为某一特定值时,振幅骤然增大,产生共振,称之为压电振荡。

这一特定频率就是石英晶体的固有频率,也称谐振频率。

石英晶振起振后要能在XTAL2线上输出一个3V左右的正弦波,以便使MCS-52片内的OSC电路按石英晶振相同频率自激振荡。

通常,OSC的输出时钟频率fOSC为0.5MHz-16MHz,典型值为12MHz或者11.0592MHz。

电容C1和C2可以帮助起振,典型值为30pF,调节它们可以达到微调fOSC的目的。

3.3 复位电路R11kC322pF+5 <TE XT><TE XT><TE XT>复位电路的主要功能是使单片机进行初始化,在初始化的过程中需要在复位引脚上加大于2个机器周期的高电平。

复位后的单片机地址初始化为0000H,然后继续从0000H单元开始执行程序。

在复位电路中提供复位信号,等到系统电源稳定后,再撤销复位信号。

但是为了在复位按键稳定的前提下,电源稳定后还要经一定的延时才撤销复位信号,以防在按键过程中引起的抖动而影响复位。

其中,R1选择1k,C3选择22pF。

3.4 A/D转换电路A/D转换的作用是进行模数转换,把接收到的模拟信号转换成数字信号输出。

在选择A/D转换时,先要确定A/D转换精度、转换速度以及转换位数等,A/D转换的位数确定与整个测量控制系统所需测量控制的范围和精度有关,在数字电压表设计中采用了8位A/D转换器ADC0808。

相关主题