雷达信号matlab仿真雷达系统分析大作作 者: 陈雪娣 学号:04104207271. 最大不模糊距离: ,max 1252u rC R km f == 距离分辨率: 1502mcR m B ∆== 2. 天线有效面积: 220.07164e GA m λπ==半功率波束宽度:3 6.44o dbG θπ==3. 模糊函数的一般表示式为()()()22*2;⎰∞∞-+=dt e t s t s f d f j d πττχ 对于线性调频信号 ()21j t p pt s t ct e T T πμ⎛⎫= ⎪ ⎪⎝⎭则有:()()221;Re Re p j t T j t d ppp t t f ct ct e e dt T T T πμπμτχτ∞+-∞⎛⎫⎛⎫+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰ ()()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ⎛⎫⎛⎫+- ⎪⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭=- ⎪ ⎪⎛⎫⎝⎭+-⎪ ⎪⎝⎭分别令0,0==d f τ可得()()220;,;0τχχd f()()sin 0;d p d d pf T f f T πχπ=()sin 1;011p p p p p T T T T T τπμττχττπμτ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭=- ⎪ ⎪⎛⎫⎝⎭- ⎪ ⎪⎝⎭程序代码见附录1的T_3.m, 仿真结果如下:4. 程序代码见附录1的T_4.m, 仿真结果如下:通过比较得知,加窗后的主副瓣比变大,副瓣降低到40db 以下,但主瓣的宽度却增加了,约为未加窗时的1.5倍,主瓣也有一定的损失。
5.由雷达方程221340(4)tPG Te SNR KT LFR λσπ=计算可得 1196.5540log SNR R =- db作图输出结果如下,程序代码见附录1的T_5.m在R=70km 时,计算得单个脉冲的SNR 1=2.7497 db,要达到要求的检测性能则需要12.5dB 的最小检测输入信噪比,而M 个相参脉冲积累可以将信噪比提高M 倍, 故10)1(SNR D M ==9.4413因此要达到要求就需要10个以上的相参脉冲进行积累。
可求得可积累脉冲数为: 3256dbr aN f θ==Ω其中,a Ω为天线的搜索速度等于30o /s.r f 是重复频率为1200hz.故满足要求.6. 设t 时刻弹舰径向与目标航向的夹角为a (t),目标偏离弹轴方向的夹角为t β(),在t=0时,31o o αα==(), 1o ββ==(0).由几何关系知, sin cos o o OM R MP R αα==经t 秒后,''cos '''sin 's a a M P MP V t V t O M OM V t αα=--=-''()''O M t arctan M P α⎛⎫=⎪⎝⎭()()'t t βαα=-sin '''()sin ()sin ()a OM V t O M R t t t ααα-==cos ()cos ()d a s V V t V t βα=+又因为cos ()cos(()')t t βαα=-cos ()cos 'sin ()sin '31cos ()sin ()22t t t t αααααα=+=+故 31cos ()sin ()cos ()22d a s V V t t V t ααα⎛⎫=++⎪⎝⎭()d f t 31cos ()sin ()22d a s V V V t t αα⎛⎫=++ ⎪⎝⎭2231cos ()sin ()22dd a s V f V V t t ααλλ⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭利用以上的关系式即可计算出第i 个重复周期弹目间的距离()i R t 和回波信号的多普勒频率()d f t .仿真程序代码见附录1的T_6.m.实验结果如下:由仿真结果可知,()d f t 的变化不大,这表明相对速度的变化不大,同时可求得688/Vd m s ≈.7. (1)相干积累:由于相对速度的变化不大,所以在仿真时取定值688/Vd m s =。
仿真程序代码见附录1的T_7_1.m.实验结果如下:相干积累前后的信噪比情况如下图所示:由仿真结果知,积累前匹配滤波器输出的信噪比为约12dB 。
已知M 个脉冲相参积累可以将信噪比提高M 倍,所以,64个脉冲相参积累后的信噪比将提高64倍(18db )。
相干积累后输出的信噪比约30db ,与预期效果相符。
(2)非相干积累:双极点滤波器的时域框图如下:由此可的它的频域响应:(22exp 2/1d k ξωτξ=--其中 (212exp /1cos()d d k ξωτξωτ=--(22exp 2/1d k ξωτξ=--式中: 0.63ξ=, 2.2d N ωτ=,N 是半功率波束宽度。
仿真程序代码见附录1的T_7_2.m.实验结果如下:非相干积累前后的信噪比情况如下图所示:由仿真结果知,积累前匹配滤波器的信噪比为约12dB。
非相干积累后输出的信噪比约20db。
将非相干的结果与相干积累的效果进行比较,可知,相干积累的效果明显优于非相干积累。
附录 1 程序代码第3题:%%%%%%%% T_3.m %%%%clear allclcclftaup=1; %脉冲宽度 100usb=10; %带宽up_down=-1; %up_down=-1正斜率, up_down=1负斜率x=lfm_ambg(taup,b,up_down); %计算模糊函数taux=-1.1*taup:.01:1.1*taup;fdy=-b:.01:b;figure(1)mesh(100*taux,fdy./10,x) %画模糊函数xlabel('Delay - \mus')ylabel('Doppler - MHz')zlabel('| \chi ( \tau,fd) |')title('模糊函数')figure(2)contour(100.*taux,fdy./10,x) %画等高线xlabel('Delay - \mus')ylabel('Doppler - MHz')title('模糊函数等高线')grid onN_fd_0=(length(fdy)+1)/2; % fd=0 的位置x_tau=x(N_fd_0,:); % 时间模糊函数figure(3)plot(100*taux,x_tau)axis([-110 110 0 1])xlabel('Delay - \mus')ylabel('| \chi ( \tau,0) |')title(' 时间模糊函数')grid onN_tau_0=(length(taux)+1)/2; % tau=0 的位置x_fd=x(:,N_tau_0); % 速度模糊函数figure(4)plot(fdy./10,x_fd)xlabel('Doppler - MHz')ylabel('| \chi ( 0,fd) |')title(' 速度模糊函数')grid onx_db=20*log10(x+eps);[I,J]=find(abs(x_db+6)<0.09); %取6db点的位置I=(I-b/.01)/(1/.01); %Doppler维坐标变换J=(J-1.1*taup/.01)/(1/.01); %时间维坐标变换figure(5) %6db 的等高线plot(J*100,I/10,'.')axis([-110 110 -1 1])xlabel('Delay - \mus')ylabel('Doppler - MHz')title('模糊函数 6db 的等高线')grid on%- - - - 模糊函数 - - -function x=lfm_ambg(taup,b,up_down)% taup 脉冲宽度;% b 带宽;%up_down=-1正斜率, up_down=1负斜率eps=0.0000001;i=0;mu=up_down*b/2./taup;for tau=-1.1*taup:.01:1.1*taupi=i+1;j=0;for fd=-b:.01:bj=j+1;val1=1-abs(tau)/taup;val2=pi*taup*(1-abs(tau)/taup);val3=(fd+mu*tau);val=val2*val3+eps;x(j,i)=abs(val1*sin(val)/val);endend%%%%%%%%%%%%%%%%%%第4题:%T_4.m%%%%%%% 利用频域处理方法进行脉冲压缩 %%%%%%% clear allclcclfeps = 1e-10;Te=100e-6; %脉冲带宽Bm=1e6; %调频mu=Bm/Te; %调频斜率Ts=1/(2*Bm); %采样周期Ns=fix(Te/Ts); %采样点数Nf=1024; % fft点数t=0:Ts:Te-Ts;y=exp(j*pi*mu*t.^2); %脉冲压缩前的线形调频信号yfft = fft(y,Nf) ;h=zeros(1,Ns);for i=1:Nsh(i)=conj(y(Ns-i+1));endhfft= fft(h,Nf); % 匹配滤波器的频域响应ycomp =abs(ifft(yfft .*hfft)); %脉冲压缩maxval = max (ycomp);ycomp = eps + ycomp ./ maxval; % 利用最大值归一化ycomp_db=20*log10(ycomp); %取对数%%%%%%%%%%%%%% 加窗处理 %%%%%%%win = hamming(Ns)';h_w=h.*win; % 加窗hfft_w=fft(h_w,Nf); % 加窗的匹配滤波器的频域响应ycomp_w = abs(ifft(yfft .*hfft_w)); %脉冲压缩maxval1 = max(ycomp_w);val=ycomp_w ;ycomp_w = eps + ycomp_w ./ maxval; % 利用ycomp的最大值归一化ycomp_w1 = eps + val./ maxval1; % 利用ycomp_w的最大值归一化ycomp_w_db=20*log10(ycomp_w); %取对数ycomp_w1_db=20*log10(ycomp_w1); %取对数%%%%%%%%%%%%%%%%tt =0:Ts:2*Te-Ts;figure(1)plot (tt,ycomp_db(1:2*Ns),'g')axis([.2*Te 1.8*Te -60 0] )xlabel ('t - seconds ');ylabel(' db')title('没有加窗的脉冲压缩输出')grid onfigure(2)plot (tt,ycomp_w1_db(1:2*Ns),'r')axis([.2*Te 1.8*Te -60 0] )xlabel ('t - seconds ');ylabel(' db')title('加窗的脉冲压缩输出')grid onfigure(3)plot (tt,ycomp_db(1:2*Ns),'g',tt,ycomp_w_db(1:2*Ns),'r') axis([.7*Te 1.3*Te -60 0] )xlabel ('t - seconds ');ylabel(' db')legend('未加窗','加窗');title('脉冲压缩输出对比')grid on%%%%%%%%%第5题:% T_5.m%%%%%%%%%SNR与距离的关系 %%%%%%clear allclceps=1e-10;c = 3.0e+8; % speed of lightlambda =0.03; % 波长pt=20; %峰值功率lambda=0.03; %波长tao=100e-6; %发射脉冲宽度G_db=30; %天线增益 in dbsigma=1000; %RCSk=1.38e-23; % Boltzman's constantTo=290; %标准室温F_db=2; % 噪声系数 in dbL_db=5; % 系统损失 in dbR=70e3:-100:0; %距离val=10*log10((pt*tao*lambda^2*sigma)/((4*pi)^3*k*To))+ 2*G_db-F_db-L_db;SNR=val-40*log10(R);figure(1)plot(R./1e3,SNR)title('SNR与距离的关系')xlabel('距离 - km')ylabel('SNR - db')grid onSNR1=val-40*log10(70e3)%计算R=70km时的SNR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%第6题:% T_6.mclear allclclembda=0.03; %波长fr=1200; %重复频率tra=180/pi; % 度到弧度的转化量alpha=31/tra; % t=0时弹舰径向与目标航向的夹角alpha_p=30/tra;% 导弹运动方向与目标航向的夹角Ro=70e3; % t=0时的弹舰距离Vs=10; % 舰船速度Va=680; % 导弹速度OM=Ro*sin(alpha); % t=0时弹舰垂直距离MP=Ro*cos(alpha); % t=0时弹舰垂直距离%%%%%%%%%%%%%%t=0:1/fr:10;OM_t=OM-0.5*Va.*t; % t时刻弹舰垂直距离MP_t=MP-Vs.*t-sqrt(3)*Va.*t/2;% t时刻弹舰垂直距离alpha_t=atan(OM_t./MP_t); %t时刻弹舰径向与目标航向的夹角R_t=OM_t./sin(alpha_t); %t时刻弹舰距离% t时刻弹舰径向速度vd_t=(sqrt(3)/2*Va+Vs).*cos(alpha_t)+0.5*Va.*sin(alpha_t);fd_t=2*vd_t/lembda; %t时刻多普勒频移%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%figure(1)plot(t,R_t)title ('t时刻弹舰距离')xlabel('时间 - s')ylabel('弹舰距离 - m')figure(2)plot(t,fd_t)title('t时刻多普勒频移')xlabel('时间 - s')ylabel('多普勒频移 - hz')%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 第7题:%T_7_1.m% 相干积累clear allclcclfc=3e8; % speed of lightTe=100e-6; % 发射脉冲宽度Be=1e6; %带宽mu=Be/Te; %调频斜率Ts=1/(2*Be); %采样频率Ro=70e3; % 起始距离fo=c/0.03; % 中心频率Vr=688; %径向速度t=0:Ts:Te-Ts;W=exp(j*pi*mu*t.^2);Wf=fft(W,1024); %%%%%%%%%%%%%%%%%%%%%%%nnn=fix((Ro-30e3)/75);%采样的起始位置,从30km开始采样R=0:75:15e3-75; %在30km和45km之间采样,采样间隔75m for i=1:200for k=1 :64Ri(k,i)=R(i)-Vr*Ts*(k-1);endendtaoi=2*Ri/c;echo=10^0.225*0.707*(randn(64,1024)+j*randn(64,1024));j=sqrt(-1);for i=1:64 %回波信号echo(i,nnn:nnn+199)=echo(i,nnn:nnn+199)+...exp(-j*2*pi*fo*taoi(i,:)+j*pi*mu*taoi(i,:).^2); endfor i=1:64 %脉冲压缩sp2(i,:)=ifft(fft(echo(i,:),1024).*conj(Wf),1024);endfor k=1:1024 % 相干积累sct(:,k)=abs(fftshift(fft(sp2(:,k),256)));endsct=sct./max(max(sct));%归一化sp=sp2./max(max(sp2));%归一化%积累前后信噪比输出figure(1)plot(20*log10(abs(sp')))ylabel('-db')title('相干积累前')axis([1 1024 -30 0])figure(2)plot(20*log10(sct'))ylabel(' - db')title('相干积累输出')axis([1 1024 -30 0])%%%%%%%%%积累结果输出r=((1:1024)*75+30e3)./1e3;dp=(-128:127)*(Be/128)/1e3;figure(1)mesh(r,dp,sct)xlabel('距离 km')ylabel('Doppler - kHz')title('相干积累输出结果')figure(2)contour(r,dp,sct)axis([30 100 -200 200])xlabel('距离 km')ylabel('Doppler - kHz')title('R-fd 等高线')grid ondp=(-32:31)*(Be/32)/1e3;figure(3)mesh(r,dp,abs(echo)/max(max(abs(echo))))xlabel('距离 km')ylabel('Doppler - kHz')title('相干积累前的结果')% T_7_2.m% 非相干积累clcclear allc=3e8; % speed of lightTe=100e-6; % 发射脉冲宽度Be=1e6; %带宽mu=Be/Te; %调频斜率Ts=1/(2*Be); %采样频率Ro=70e3; % 起始距离fo=c/0.03; % 中心频率Vr=688; %径向速度fr=1200; %重复频率t=0:Ts:Te-Ts;W=exp(j*pi*mu*t.^2);Wf=fft(W,1024);%%%------- 双极点滤波器 -----%%%%%%sheta_3_db=6.4; %半功率波束宽度v=30; % 天线的搜索速度N=sheta_3_db*fr/v;wd_tao=2.2/N;xi=0.63;k1=2*exp(-xi*wd_tao/sqrt(1-xi^2))*cos(wd_tao); k2=exp(-2*xi*wd_tao/sqrt(1-xi^2));NN=64;w=-pi:pi/NN:pi-pi/NN;j=sqrt(-1);H=exp(-j.*w)./(1-k1*exp(-j*w)+k2*exp(-2*j.*w)); h=ifft(H,64);%%- - - - 信号处理 - - - %nnn=fix((Ro-30e3)/75);%采样的起始位置,从30km开始采样R=0:75:15e3-75; %在30km和45km之间采样,采样间隔75m for i=1:200for k=1 :64Ri(k,i)=R(i)+Vr*Ts*(k-1);endendtaoi=2*Ri/c;echo=10^0.275*0.707*randn(64,1024)+j*randn(64,1024);j=sqrt(-1);for i=1:64 %回波信号,加随机相位模拟非相干信号echo(i,nnn:nnn+199)=echo(i,nnn:nnn+199)...+exp(-j*2*pi*fo*taoi(i,:)+j*pi*mu*taoi(i,:).^2 ... +j*2*pi*rand*ones(1,200));endfor i=1:64 %脉冲压缩sp2(i,:)=ifft(fft(echo(i,:),1024).*conj(Wf),1024); endfor i=1:1024 %用双极点滤波器进行非相干积累isct(:,i)=conv((sp2(:,i)),h)';endfor k=1:1024sct(:,k)=abs(fftshift(fft(isct(:,k),256)));endsct=sct./max(max(sct)); %归一化sp2=sp2./max(max(abs(sp2))); %归一化%积累前后信噪比输出figure(1)plot(20*log10(abs(sp2')))ylabel('-db')title('非相干积累前')axis([1 1024 -30 0])figure(2)plot(20*log10(sct'))ylabel(' - db')title('非相干积累输出')axis([1 1024 -30 0])%%%%%%%%%积累结果输出r=((1:1024)*75+30e3)./1e3;dp=(-128:127)*(Be/128)./1e3;figure(3)mesh(r,dp,sct)xlabel('距离 km')ylabel('Doppler - kHz')title('非相干积累输出结果')figure(4)contour(r,dp,sct)axis([30 100 -200 200])xlabel('距离 km')ylabel('Doppler - kHz')title('R-fd 等高线')grid ondp=(-32:31)*(Be/32)/1e3;figure(5)mesh(r,dp,abs(echo)/max(max(abs(echo))))xlabel('距离 km')ylabel('Doppler - kHz')title('非相干积累前的结果')%%%%%————————%%%%%%二翻译11.2比幅单脉冲比幅单脉冲跟踪类似于对于圆形区域而言需要四个斜的波束来测量目标的角度位置。