当前位置:文档之家› 关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨

关于电力系统电压与无功补偿问题探讨电力系统中无功补偿对电力系统的重要性越来越受到重视,合理地投停使用无功补偿设备,对调整电网电压、提高供电质量、抑制谐波干扰、保证电网安全运行都有着十分重要的作用。

如果系统无功电源不足,则会使电网处于低电压水平上的无功功率平衡,即靠电压降低、负荷吸收无功功率的减少来弥补无功电源的不足。

同样,如果由于电网缺乏调节手段或无功补偿元件的不合理运行使某段时间无功功率过剩,也会造成整个电网的运行电压过高。

因此,要维持整个系统的电压水平,就必须有足够的无功电源来满足系统负荷对无功功率的需求和补偿线路和变压器中的无功功率损耗。

一、无功功率就地补偿的概念无功补偿装置的分布,首先要考虑调压的要求,满足电网电压质量指标。

同时,也要避免无功功率在电网内的长距离传输,减少电网的电压损耗和功率损耗。

无功功率补偿的原则是做到无功功率分层分区平衡,就是要做到哪里有无功负荷就在那里安装无功补偿装置。

这既是经济上的需要,也是无功电力特征所必需的,如果不这样做,就达不到最佳补偿的目的,解决不了无功电力就地平衡的问题。

二、无功功率的平衡在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。

电压与无功功率也和频率与有功功率一样,是一对对立的统一体。

当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。

电压与无功功率之间的关系要比频率与有功功率之间的关系复杂得多,大体上有以下几点:2.1在一个并列运行的电力系统中,任何一点的频率都是一样的,而电压与无功电力却不是这样的。

当无功功率平衡时,整个电力系统的电压从整体上看是会正常的,是可以达到额定值的,即便是如此,也是指整体上而已,实际上有些节点处的电压并不一定合格,如果无功不是处于平衡状态时,那么情况就更复杂了,当无功出力大于无功负荷时,电压普遍会高一些,但也会有个别地方可能低一些,反之,也是如此。

2.2压器和架空线路在传送电能时需要消耗大量的无功,称为“无功损耗”,一般来说,这些无功损耗与整个电网中的无功负荷的大小是差不多的,我们以一台50MVA的110kV变压器为例来了解变压器在运行中的无功损耗情况。

变压器的参数为:Ue=110kV,Se=50MVA,Uk%=17%,变压器在传送电能时的无功损耗的计算式为:Q=SeUk%(I/Ie)2式中I—变压器的负荷电流;Ic—变压器的额定电流,与变压器的无功损耗与变压器的负载率、变JE器的额定容量及短路阻抗有关。

如果这台变压器满负荷运行,那么它的无功损耗就是:Q=50MVA×17%=8.5Mvar此时变压器的无功损耗相当大,其低压侧安装的并联电容器组的容量甚至不够补偿变压器满负荷时的无功损耗。

2.3无功功率不宜远距离输送,当输送功率与传送距离达到一定极限时,其传送功率成为不可能,这是由于超高压等级的变压器、线路电抗较大,其无功损耗Q=I2X相应也很大,所输送的无功功率均损耗在变压器及线路上了。

另外,传送大量的无功功率时,线路电压损失也相当大,同样会造成无法传送的结果。

三、各种无功补偿设备及补偿方式3.1同步调相机同步调相机实质上是一种不带机械负载的同步电动机,它是最早采用的一种无功补偿设备,在并联电容器得到大量采用后,它退居次要地位。

其主要缺点是投资大,运行维护复杂。

因此,许多国家不再新增同步调相机作为无功补偿设备。

调相机可以安装强行励磁装置,当电网发生故障时,电压剧烈降低,调相机可以强行励磁,保持电网电压稳定,因而提高了系统运行的稳定性。

电容器输出无功功率与运行电压的平方成正比,电压降低,输出的无功将急剧下降,比如,当电压下降10%,变为0.9Ue时,电容器输出的无功功率变为0.81Q,即其输出的无功功率将下降19%,所以,电容器此时不能起到稳定系统电压的作用。

3.2并联电容器作为无功补偿设备,电容器有以下显著优点:电容器的损耗低,效率高。

现代电容器的损耗只有本身容量的0.02%左右。

调相机除了本身的损耗外,其附属设备还需用一定的所用电,损耗2%~30%,大大高于电容器;电容器是静止设备,运行维护简单,没有噪音。

调相机为旋转电机,运行维护很复杂;并联电容器是电网中用得最多的一种无功功率补偿设备,目前国内外电力系统中90%的无功补偿设备是并联电容器。

3.3并联电抗器并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。

为了防止超高压线路空载或轻负荷运行时,线路的充电功率造成线路电压升高,一般装设并联电抗器吸收线路的充电功率,同时,并联电抗器也用来限制由于突然甩负荷或接地故障引起的过电压从而危及系统的绝缘。

在无功电源充裕的系统中,应该大力推广有载调压变压器,这是在各种运行方式下保证电网电压质量的关键手段之一。

随着我国经济的发展和人民生活水平的提高,电网负荷的峰谷差也越来越大,线路、变压器上高峰负荷与低谷负荷产生的电压损耗的差别,已经大到无法仅仅用发电机调压或无功补偿的方法来满足两种运行方式下用户电压的要求了,其结果不是高峰负荷时用户电压太低,就是低谷负荷时电压太高。

在这种情况下,输电系统中的一级变压器或多级变压器,采用有载调压是保证用户电压质量最有效的办法。

电力系统电压与无功补偿1、交流电力系统需要电源供给两部分能量,一部分将用于作功而被消耗掉,这部分电能将转换为机械能、光能、热能或化学能,我们称为“有功功率”。

另一部分能量是用来建立磁场,用于交换能量使用的,对于外部电路它并没有作功,由电能转换为磁能,再由磁能转换为电能,周而复始,并没有消耗,这部分能量我们称为“无功功率”,无功是相对于有功而言,不能说无功是无用之功,没有这部分功率,就不能建立感应磁场,电动机、变压器等设备就不能运转。

2、无功功率按电路的性质有正有负,Q为正值(感性)时表示吸收无功功率,Q为负值(容性)时表示发出无功功率,在感性电路中,电流滞后于电压,f > 0,Q为正值。

而在容性电路中,电流超前于电压,f < 0,Q为负值。

这就是人们通常称电动机等设备“吸收”无功而电容器发出“无功”的道理。

3、输电线路电压损耗由两部分组成,即有功功率在电阻上的压降和无功功率在电抗上的压降。

一般说来,在超高压电网的线路、变压器的等值电路中,电抗的数值比电阻大得多。

所以无功功率对电压损耗的影响很大,而有功功率对电压损耗的影响则要小得多。

因此,可以得出结论,在电力系统中,无功功率是造成电压损耗的主要因素。

由电压损耗表达式DU = (PR + QX)/U可知,要改变电压损耗有两种办法。

(1)改变元件的电阻;(2)改变元件的电抗,都能起到改变电压损耗的作用。

可采取的一种办法是增大导线截面减小电阻以减小电压损耗,这种办法在负荷功率因数较高、原有导线截面偏小的配电线路中比较有效。

适宜负荷不断增加的农村地区采用。

而电网中用的最多的办法是减少线路中的电抗,在超高压输电线路中广泛采用的分裂导线就可以明显降低线路的电抗。

在我国,220kV线路一般采用二分裂、500kV线路采用四分裂导线。

采用分裂导线,降低线路电抗,不仅仅减少了电压损耗,而且有利于电力系统的稳定性,能提高线路的输电能力。

减小线路电抗的另一种办法是采用串联电容补偿,就是在线路中串联一定数值的电容器,大家知道,同一电流流过串联的电感、电容时,电感电压与电容电压在相位上正好差180串联电容器补偿,现在主要应用于超高压、大容量的输电线路上4、除了用改变电力网参数来减少电压损耗以外,改变电压损耗的另一个重要方面是改变电网元件中传输的功率。

即改变表达式中的P和Q的大小,在满足负荷有功功率的前提下,要改变供电线路、变压器传输的有功功率,是比较困难的,常常是不可能的。

因此,改变线路、变压器传输功率都是改变其无功功率,使表达式中的Q减少。

由此我们引出无功功率的几个非常重要的关键的概念。

5、在电力系统中,频率与有功功率是一对统一体,当有功负荷与有功电源出力相平衡时,频率就正常,达到额定值50Hz,而当有功负荷大于有功出力时,频率就下降,反之,频率就会上升。

电压与无功功率也和频率与有功功率一样,是一对对立的统一体。

当无功负荷与无功出力相平衡时,电压就正常,达到额定值,而当无功负荷大于无功出力时,电压就下降,反之,电压就会上升。

(高峰负荷时段无功需求多,也就是感性无功需求大,也就是需要吸收很多无功,这时一般将变电所低压侧的电容器投入,确保电压不至于降低太多;当谷期负荷时无功需求不大,也就是感性无功需求下降,也就是不需要吸收太多的无功,这是一般将变电所低压侧的电容器退出,以上控制在变电所中一般是由系统自动完成,而不需要人工干预)6、有些地方想用调节变压器分接头的办法来解决本地区电压低的问题。

开始,这种办法也有一些效果,某些供电点电压升高了,但这是以降低别处电压为代价的,因为总的无功电源不足,局部地区电压升高无功负荷增大,必然使别处无功功率更少、电压更低。

各处普遍采用调节变压器分接头的结果,不仅没能提高负荷的供电电压,而是使得无功损耗加大,整个系统低电压问题更加严重。

在这种情况下,首要的问题应该是增加无功功率补偿设备。

7、各种无功补偿设备及补偿方式1 同步调相机2并联电容器3并联电抗器并联电抗器是一种感性无功补偿设备,它可以吸收系统中过剩的无功功率,避免电网运行电压过高。

4静止补偿器(SVC-Static Var Compensator)静止补偿器是近年来发展起来的一种动态无功功率补偿装置,电容器、电抗器、调相机是对电力系统静态无功电力的补偿,而静止补偿器主要是对电力系统中的动态冲击负荷的补偿。

根据负荷变动情况,静止补偿可以迅速改变所输出无功功率的性质或保持母线电压恒定。

静止补偿器实际上是将可控电抗器与电容器并联使用。

电容器可发出无功功率,可控电抗器可吸收无功功率。

其控制系统由可控的电子器件来实现,响应速度远远高于调相机,一般只有20ms。

它主要用于冲击负荷如大型电炉炼钢、大型轧机以及大型整流设备等。

另外,在电力系统的电压枢纽点、支撑点也可以用静止补偿器来提高系统的稳定性,同时,静止补偿器还可以抑制谐波对电力系统的危害。

在我国湖南、湖北、广东、河南等多个500kV枢纽变电站都采用了这种装置。

例如我国某大型炼钢厂使用电弧炉炼钢,严重影响供电质量,电弧炉运行时使电压下降15%~20%,谐波的干扰使众多用户的电视不能收看,电器设备不能正常使用,群众反应强烈。

在装了静止补偿装置后,供电质量显著改善,电压波动很小,完全在允许范围内,谐波干扰明显降低。

在周围广大用户普遍受益的同时,该厂也降低了线损,减少了电费支出,提高了产品的产量和质量,获得了良好的经济效益。

相关主题