核磁共振徐雪霞核磁共振(NMR )就是指处于某个静磁场中的物质的原子核系统受到相应频率的电磁辐射时,在它们的磁能级之间发生的共振跃迁现象。
它自问世以来已在物理、化学、生物、医学等方面获得广泛应用,是测定原子的核磁矩和研究核结构的直接而准确的方法,也是精确测量磁场的重要方法之一。
一 实验目的1 了解核磁共振的基本原理和实验方法2 测量氟核19F 的旋磁比和g 因子二 实验原理其原理可从两个角度阐明。
1. 量子力学观点1) 单个核的磁共振实验中以氢核为研究对象。
通常将原子核的总磁矩μ在其角动量P 方向的投影µ称为核磁矩。
它们之间关系可写成:P γμ= (1) 对于质子,式中pN m e g 2=γ称为旋磁比。
其中e 为质子电荷,p m 为质子质量,N g 为核的朗德因子。
按照量子力学,原子核角动量的大小由下式决定:)1(+=I I P (2)式中 为普朗克常数,I 为核自旋量子数,对于氢核21=I 。
把氢核放在外磁场B 中,取坐标轴z 方向为B 的方向。
核角动量在B 方向的投影值由下式决定:m P z = (3)式中m 为核的磁量子数,可取I I I m -⋅⋅⋅-=,,1,。
对于氢核21,21-=m 。
核磁矩在B 方向的投影值m m e g m m e g P pN p N Z Z )2(2 ===γμ (4) 将之写为m g N N Z μμ= (5) 式中pN m e 2 =μ=5.050787×10-27焦耳/特斯拉,称为核磁子,用作核磁矩的单位。
磁矩为μ的原子核在恒定磁场中具有势能mB g B E N N z μμμ-=-=⋅-=B (6)任何两个能级间能量差为)(2121m m B g E E E N N m m --=-=∆μ (7)根据量子力学选择定则,只有1±=∆m 的两个能级之间才能发生跃迁,其能量差为B g E N N μ=∆ (8)若实验时外磁场为B 0,用频率为ν0的电磁波照射原子核,如果电磁波的能量h ν0恰好等于氢原子核两能级能量差,即00B g h N N μν= (9)则氢原子核就会吸收电磁波的能量,由21=m 的能级跃迁到21-=m 的能级,这就是核磁共振吸收现象。
式(9)为核磁共振条件。
为使用上的方便,常把它写为:00)(B hg N N μν= 或 00B γω= (10) 上式为本实验的理论公式。
对于氢核,H γ=2.67522╳102MHz/T 。
2) 核磁共振信号强度实验所用样品为大量同类核的集合。
由于低能级上的核数目比高能级上的核数目略微多些,但低能级上参与核磁共振吸收未被共振辐射抵消的核数目很少,所以核磁共振信号非常微弱。
推导可知,T 越低,0B 越高,则共振信号越强。
因而核磁共振实验要求磁场强些。
另外,还需磁场在样品范围内高度均匀,若磁场不均匀,则信号被噪声所淹没,难以观察到核磁共振信号。
2. 经典理论观点1) 单个核的拉摩尔进动具有磁矩µ的原子核放在恒定磁场B 0中,设核角动量为P ,则由经典理论可知:0B μP ⨯=dt d (11) 将(1)式代入(11)式得:)(0B μμ⨯=γdtd (12) 由推导可知核磁矩µ在静磁场B 0中的运动特点为:a) 围绕外磁场B 0做进动,进动角频率00B γϖ=,跟µ和B 0间夹角θ无关;b) 它在xy 平面上的投影⊥μ是一常数;c) 它在外磁场B 0方向上的投影z μ为常数;如果在与B 0垂直方向上加一个旋转磁场B 1,且B 1<<B 0 , 设B 1的角频率为1ω,当01ωω=时,则旋转磁场B 1与进动着的核磁矩µ在运动中总是同步。
可设想建立一个旋转坐标系x ˊ,y ˊ,z ˊ, z ˊ与固定坐标系x ,y ,z 的z 轴重合,x ˊ与y ˊ以角速度ω1绕z 轴旋转。
则从旋转坐标系来看,B 1对µ的作用恰似恒定磁场,它必然要产生一个附加转矩。
因此µ也要绕B 1作进动,使µ与B 0间夹角θ发生变化。
由核磁矩的势能公式θμc o s B E -=⋅-=B μ (13) 可知,θ的变化意味着磁势能E 的变化。
这个改变是以所加旋转磁场的能量变化为代价的。
即当θ增加时,核要从外磁场B 1中吸收能量,这就是核磁共振现象。
共振条件是:001B γωω== (14)这一结论与量子力学得出的结论一致。
如果外磁场B 1的旋转速度ω1≠ω0,则θ角变化不显著,平均起来变化为零,观察不到核磁共振信号。
2) 布洛赫方程上面讨论的是单个核的核磁共振,但实验中观察到的现象是样品中磁化强度矢量M变化的反映,所以必须研究M 在外磁场B 中的运动方程。
在核磁共振时,有两个过程同时起作用,一是受激跃迁,核磁矩系统吸收电磁波能量,其效果是使上下能级的粒子数趋于相等;一是弛豫过程,核磁矩系统把能量传与晶格,其效果是使粒子数趋向于热平衡分布。
这两个过程达到一个动态平衡,于是粒子差数稳定在某一新的数值上,我们可以连续地观察到稳态的吸收。
现在首先研究磁场对M 的作用。
在外磁场B 作用下,由式(12)可得:)(B M M ⨯=γdtd (15) 可导出M 围绕B 作进动,进动角频率ω=γB 。
假定外磁场B 沿z 轴方向,再沿x 轴方向加一线偏振磁场x 1e B )(cos 21t B ω= (16)e x 为沿x 轴的单位矢量,2B 1为振幅。
根据振动理论,该线偏振场可看作左旋圆偏振场和右旋圆偏振场的叠加,只有当圆偏振场的旋转方向与进动方向相同时才起作用。
对于γ为正的系统,只有顺时针方向的圆偏振场起作用。
以此为例,B 1=B 1顺。
则B 1在坐标轴的投影为t B B x ωcos 11= (17)t B B y ωsin 11-= (18)当旋转磁场B 1不存在且自旋系统与晶格处于热平衡时,M 只有沿外磁场z 方向的分量M z , 而M x =M y =0则M z =M 0=0χH=0χB /µ0 (19)式中0χ为静磁化率,µ0为真空磁导率, M 0为自旋系统与晶格达到热平衡时的磁化强度。
其次考虑弛豫对M 的影响。
核磁矩系统吸收了旋转磁场的能量后,处于高能态的核数目增大(M z <M 0),偏离了热平衡态。
由于自旋与晶格的相互作用,晶格将吸收核的能量,使核跃迁到低能态而向热平衡过渡,表示这个过渡的特征时间称为纵向弛豫时间,以T 1表示。
假设M z 向平衡值M 0过渡的速度与M z 偏离M 0的程度(M z ―M 0)成正比,则M z 的运动方程可写成:10)(T M M dt dM Z z --= (20)此外,自旋和自旋间也存在相互作用,对每个核而言,都受邻近其它核磁矩所产生局部磁场的作用,而这个局部磁场对不同的核稍有不同,因而使每个核的进动角频率也不尽相同。
假若某时刻所有的核磁矩在xy 平面上的投影方向相同,由于各个核的进动角频率不同,经过一段时间T 2后,各个核磁矩在xy 平面上的投影方向将变为无规分布,从而使M x 和M y 最后变为零。
T 2称为横向弛豫时间。
与M z 类似,假设M x 和M y 向零过渡的速度分别与M x 和M y 成正比,则运动方程可写成:⎪⎪⎭⎪⎪⎬⎫-=-=22T M dt dM T M dt dM y y x x (21) 同时考虑磁场B =B 0+B 1和弛豫过程对磁化强度M 的作用,如果假设各自的规律性不受另一因素影响,由式(15)、(17)、(18)、(19)、(21),就可简单地得到描述核磁共振现象的基本运动方程:k j i B M M )(1)(1012M M T M M T dt d z y x --+-⨯=γ (22) 该方程称为布洛赫方程。
其中B =i B 1cos ωt -j B 1sin ωt +k B 0。
方程(22)的分量式为⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫--+-=--=-+=)(1)c o s s i n ()c o s ()s i n (0112012101M M T t B M t B M dt dM T M B M t B M dtdM T M t B M B M dt dM z y x zy x z yxz y x ωωγωγωγ (23) 在各种条件下解上述方程,可以解释各种核磁共振现象,一般来说,对液体样品是相当正确的,而对固体样品不很理想。
本实验中,质子样品的实验结果就比氟样品精确。
建立旋转坐标系x′,y′,z ′,B 1与x ′重合,⊥M 为M 在xy 平面内的分量,u 和-v 分别为⊥M 在x ′和y ′方向上的分量,推导可知M z 的变化是v 的函数而非u 的函数,而M z 的变化表示核磁化强度矢量的能量变化,所以v 变化反映了系统能量的变化。
如果磁场或频率的变化十分缓慢,可得稳态解⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫+-+-+=+-+-=+-+-=212122022002221212202220121212202200221)(1)](1[)(1)(1)(T T B T M T M T T B T T M B v T T B T M T B u z γωωωωγωωγγωωωωγ (24)则可得u ,v 随ω变化的函数关系曲线,如图1所示,(a )称为色散信号,(b )称为吸收信号。
可知当外加旋转磁场B 1的角频率ω等于M 在磁场B 0中进动的角频率ω0时,吸收信号最强,即出现共振吸收。
图1核磁共振时的色散信号和吸收信号此外,在做核磁共振实验时,观察到的共振信号出现“尾波”,这是由于频率调制速度太快,不满足布洛赫方程稳态解的“通过共振“条件。
三 实验装置核磁共振实验装置由探头、电磁铁及磁场调制系统、磁共振实验仪、外接示波器、频率计数器组成。
1 磁场磁场由稳流电源激励电磁铁产生,保证了磁场从0到几千高斯范围内连续可调,数字电压表和电流表使得磁场强度的调节得到直观的显示,稳流电源保证了磁场强度的高度稳定。
2 扫场观察核磁共振信号有两种方法:扫场法,即旋转场B1的频率ω1固定,而让磁场B连续变化通过共振区域;扫频法,即磁场B固定,让旋转磁场B1的频率ω1连续变化通过共振区域。
二者完全等效。
但后者更简单易行。
本实验采用扫频法,在稳恒磁场B0上叠加一个低频调制磁场B’=B΄m sinω΄t,则样品所在区域为B0+B΄m sinω΄t,由于B΄m很小,总磁场方向保持不变,只是磁场幅值按调制频率在B0-B΄m~B0+B΄m范围内发生周期性变化。
可得相应的拉摩尔进动频率ω0为ω0= γ(B0+B΄m sinω΄t)(25)只要旋转场频率ω1调在ω0附近,同时B0-B΄m≤B≤B0+B΄m,则共振条件在调制场的一个周期内被满足两次。