当前位置:文档之家› 第5章 计算机控制系统模拟化设计

第5章 计算机控制系统模拟化设计


其补偿的基本思想是:在D(s)未变成D(z)之前,将D(s)的断 点频率预先加以修正(预畸变),使得预修正后的 D(s) 变 换成D(z)时正好达到所要求的断点频率。 用预畸变双线性变换法设计的步骤如下: 1.将D(s)的零点或极点(s+a)以a′代替a,即作预畸变
( s a) ( s a )
双线性变换的特点: (1)将整个S平面的左半面变换到Z平面的单位圆内,因而 没有混叠效应。 (2)稳定的D(s)变换成稳定的D(z)。 (3)D(z)不能保持D(s)的脉冲响应和频率响应。
第5章 计算机控制系统模拟化设计
5.2.5 频率预畸变双线性变换法
上述的双线性变换,将S平面的虚轴变换到Z平面的 单位圆周,因而没有混叠现象。但是在模拟频率Ω和离散 频率ω之间却存在非线性关系。
5.2 模拟控制器的离散化方法
从信号理论角度来看,模拟控制器就是模拟信号滤 波器应用于反馈控制系统中作为校正装置。滤波器对控 制信号中有用的信号起着保存和加强的作用,而对无用 的信号起着抑制和衰减的作用。模拟控制器离散化成的 数字控制器,也可以认为是数字滤波器。
第5章 计算机控制系统模拟化设计
5.2.1 冲激不变法
第5章 计算机控制系统模拟化设计
r(t)
e(t) T
e*(t)
D ( z)
u*(t) T
G(z ) ZOH G 0 ( s)
y(t)
图5.1离散闭环控制系统 r(t)
e(t)
D ( s)
u(t)
G 0 ( s)
y(t)
图5.2 模拟闭环控制系统
第5章 计算机控制系统模拟化设计
模拟控制器D(s)与数字控制器D(z)之间的等效离散原理和 等效条件: 设有模拟信号 u0(t),零阶保持器的输入为 u0*(t),输出为 u(t),如图5.3所示。
1 e Ts 1 e Ts / 2 e Ts / 2 2 s s s 2/T
第5章 计算机控制系统模拟化设计
4.用适当的方法将D(s)离散化成D(z)。 5.将D(z)化成差分方程。 二阶工程设计法 : 假设图5.2所示的连续系统为一个二阶系统,其闭环传 递函数可表示为
W ( s) Y ( s) 1 R( s) T2 s 2 T1 s 1
第5章 计算机控制系统模拟化设计
模拟化设计方法的一般步骤如下: 1.根据性能指标要求和给定对象的G0(s),用连续控制理 论的设计方法,设计D(s)。 2.确定离散系统的采样周期。 3.在设计好的连续系统中加入零阶保持器。检查由于零 阶保持器的滞后作用,对原设计好的连续系统性能是否 有影响,以决定是否修改D(s)。 为了简便起见,零阶保持器的传递函数可近似为:
z 1 T
z 1 T
D( z ) D( s)
s
前向差分变换法中稳定的D(s)不能保证变换成稳定的 D(z),且不能保证有相同的脉冲响应和频率响应。
第5章 计算机控制系统模拟化设计
5.2.4 双线性变换法
双线性变换又称塔斯廷(Tustin)变换法,它是s与z关 系的另一种近似式。由Z变换的定义和级数展开式可知
u(t ) u0 (t )
第5章 计算机控制系统模拟化设计
由以上分析可知,若系统的采样频率相对于系统的 工作频率是足够高的,以至于采样保持器所引起的附加 滞后影响可忽略时,系统的数字控制器可用模拟控制器 代替,使整个系统成为模拟系统,从而可用模拟化方法 进行设计。等效的必要条件是使采样周期T足够小,这是 计算机控制系统等效离散化设计方法的理论依据。应用 该方法,当采样周期较大时,系统实际达到的性能往往 比预期的设计指标差,也就是说,这种设计方法对采样 周期的选择有比较严格的限制,但当被控对象是一个较 慢过程时,该方法可以得到比较满意的结果。
其微分方程为
du (t ) e(t ) dt
用差分代替微分,则 两边取Z变换得
du (t ) u (k ) u (k 1) e( k ) dt T
(1 z 1 )U ( z) TE( z)
第5章 计算机控制系统模拟化设计

D( z )
U ( z) 1 E ( z ) 1 z 1 T
D( s)
a sa
解:
D( z ) D( s )
a 1 e aT z 1
aT
u(k ) ae(k ) e 控制算法为:
u(k 1)
第5章 计算机控制系统模拟化设计
2.特点及应用范围 冲激不变法的特点是: (1)D(z)与D(s)的脉冲响应相同。 (2)若D(s)稳定,则D(z)也稳定。 (3)D(z)不能保持D(s)的频率响应。 (4)D(z)将ω s的整数倍频率变换到Z平面上的同一个点的 频率,因而出现了混叠现象。 其应用范围是:连续控制器 D(s) 应具有部分分式结构或 能较容易地分解为并联结构。 D(s) 具有陡衰减特性,且 为有限带宽信号的场合。这时采样频率足够高,可减少 频率混叠影响,从而保证 D(z) 的频率特性接近原连续控 制器D(s)。
u0(t) T u0*(t)
1 e s
Ts
u(t)
图5.3 零阶保持器的信息传递
对于离散信号u0*(t)它的频谱函数为
1 U ( j ) U 0 ( j jk s ) T k
* 0
其中为采样角频率。
第5章 计算机控制系统模拟化设计
对于零阶保持器的频率特性为
T 1 e jT sin(T / 2) j Gh ( j ) T e 2 j T / 2
D( s ) 1 TI s
k 1 TI s( 1 s 1) T1 s(T1 s / 2 1)
G0 ( s ) k 1s 1
,试按
G( s) D( s)G0 ( s)
设 T1 2 1
TI kT1 2k 1

D( s )
1 2k 1 s
第5章 计算机控制系统模拟化设计
T sin(T / 2) j U ( j ) e 2 U 0 ( j ) T / 2
第5章 计算机控制系统模 max<<ω s时,则 所以
U ( j ) e
jT 2
sin(T / 2) 1 T / 2
U 0 ( j )
上式说明,两者唯一的差别仅仅是由零阶保持器产 生的相位移 e jT / 2 ,如果能补偿这一相位移或者大大减 小这一相位移对系统的影响(如前置滤波、超前校正 等),就可以保证离散控制器和模拟控制器具有完全一 致或极接近的频率特性,即实现二者的完全等效。 若ω max / ω s <1/10时,其滞后相角大约为18˚,于 是,就有 U ( j ) U0 ( j ) 即

当ω T取值0~π 时,Ω 的值为0~∞。这意味着,模 拟滤波器的全部频率响应特性被压缩到离散滤波器的 0<ω T<π 的频率范围之内。这两种频率之间的非线性特 性,使得由双线性变换所得的离散频率响应产生畸变, 可以采用预畸变的办法来补偿频率特性的畸变。
2 T tg T 2
第5章 计算机控制系统模拟化设计
n
其采样值为
u (kT ) Ai e ai kT
i 1
n
i 1
第5章 计算机控制系统模拟化设计
即数字控制器的脉冲响应序列,因此得到
D( z ) u (kT )
n
Ai 1 e
例5.5 已知模拟控制器 求数字控制器D(z)。
i 1
aiT
z
1
D( s)
第5章 计算机控制系统模拟化设计
5.2.2 加零阶保持器的Z变换法
这种方法就是用零阶保持器与模拟控制器串联,然 后再进行Z变换离散化成数字控制器,即
1 e Ts D( z ) D( s ) s
加零阶保持器Z变换法的特点:
1.若D(s)稳定,则D(z)也稳定。
可以看出,D(z)与D(s)的形式完全相同,由此可得如下等 效代换关系 : 1 z 1
s T
1 z 1 T
便可得到D(z),即
D( z ) D( s )
s
后向差分变换法的特点: (1)稳定的D(s)变换成稳定的D(z)。 (2)D(z)不能保持D(s)的脉冲响应和频率响应。
第5章 计算机控制系统模拟化设计
a
D( s)
a sa
,求数字控制器D(z)。
2 aT tg T 2
D( z ) k a 2 1 z 1 2 aT tg T 1 z 1 T 2
a D( s, a) 2 aT s tg T 2
lim k
z 1
a 2 1 z 2 aT tg 1 T 1 z T 2
得到
2 aT a tg T 2
D(s, a)
2.将
D(z), ) D(s, a变换为
D( z ) k D( s, a )
s
2 (1 z 1 ) T (1 z 1 )
D ( z ) 1 求出。 k为放大系数,利用 lim z 1
第5章 计算机控制系统模拟化设计
例5.10 已知模拟控制器 解:作预畸变
零阶保持器输出u(t)的频率特性为
* U ( j ) Gh ( j )U 0 ( j ) T sin(T / 2) j e 2 U 0 ( j jk s ) T / 2 k
当系统的采样周期很小,即采样角频率足够高时,由于 保持器的低滤波性,除了的主频谱(k=0时)之外,其高 频部分全部被滤掉,则上式化简为
2.前向差分变换法 如果将微分用下面差分代替,得到 两边取Z变换得 即
( z 1)U ( z ) TE ( z )
D( z ) U ( z) 1 z 1 E( z) T
相关主题