高等数学(同济大学版)-课程讲解-1.2数列的极限-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN课时授课计划课次序号: 02 一、课题:§1.2 数列的极限二、课型:新授课三、目的要求:1.理解数列极限的概念;2.了解收敛数列的性质.四、教学重点:数列极限的定义.教学难点:数列极限精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–2 3(2)(4),5八、授课记录:九、授课效果分析:第二节 数列的极限复习1. 函数的概念与特性,复合函数与反函数的概念,基本初等函数与初等函数;2. 数列的有关知识.极限概念是由于求某些实际问题的精确解答而产生的.例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法——割圆术,就是极限思想在几何学上的应用.设有一圆,首先作内接正六边形,把它的面积记为1A ;再作内接正十二边形,其面积记为2A ;再作内接正二十四边形,其面积记为3A ;循此下去,每次边数加倍,一般地把内接正126-⨯n 边形的面积记为()n A n N ∈.这样,就得到一系列内接正多边形的面积:,,,,,, n A A A A 321它们构成一列有次序的数.当n 越大,内接正多边形与圆的差别就越小,从而以n A 作为圆面积的近似值也越精确.但是无论n 取得如何大,只要n 取定了,n A 终究只是多边形的面积,而还不是圆的面积.因此,设想n 无限增大(记为∞→n ,读作n 趋于无穷大),即内接正多边形的边数无限增加,在这个过程中,内接正多边形无限接近于圆,同时n A 也无限接近于某一确定的数值,这个确定的数值就理解为圆的面积.这个确定的数值在数学上称为上面这列有次序的数(所谓数列),,,,,, n A A A A 321当∞→n 时的极限.在圆面积问题中我们看到,正是这个数列的极限才精确地表达了圆的面积.在解决实际问题中逐渐形成的这种极限方法,已成为高等数学中的一种基本方法,因此有必要作进一步的阐明.一、 数列极限的定义1. 数列的概念定义1 如果函数f 的定义域f D =N ={1,2,3,…},则函数f 的值域f (N )={f (n )|n ∈N }中的元素按自变量增大的次序依次排列出来,就称之为一个无穷数列,简称数列,即f (1),f (2),…,f (n ),….通常数列也写成x 1,x 2,…,x n ,…,并简记为{x n },其中数列中的每个数称为一项,而x n =f (n )称为一般项或通项.对于一个数列,我们感兴趣的是当n 无限增大时,x n 的变化趋势. 以下几个均为数列:1,12,23,…,1n n-,... (1) 2,4,6,...,2n , (2)1,0,1,...,11+(1)n n --, (3)1,12-,13,...,1(1)n n --, (4)2,2,2,...,2, (5)2. 数列的极限当n 无限增大时,若数列的项x n 能与某个常数a 无限地接近,则称此数列收敛,常数a 称为当n 无限增大时该数列的极限,如数列(1),(4),(5)均为收敛数列,它们的极限分别为1,0,2.但是,以上这种关于收敛的叙述是不严格的,我们必须对“n 无限增大”与“x n 无限地接近a ”进行定量的描述,让我们来研究数列(4).取0的邻域U (0, ε).1. 当ε=2时,数列(4)的所有项均属于U (0,2),即n ≥1时,x n ∈U (0,2).2. 当0.1ε=时,数列(4)中除开始的10项外,从第11项起的一切项x 11,x 12,…,x n ,…均属于(0,0.1)U ,即n >10时,(0,0.1)n x U ∈.3. 当0.0003ε=时,数列(4)中除开始的3333项外,从第3334项起的一切项x 3334,x 3335,…,x n ,…均属于(0,0.0003)U ,即n >3333时,(0,0.0003)n x U ∈.如此推下去,无论ε是多么小的正数,总存在N (N 为大于1ε的正整数),使得n >N 时,|x n -0|=1(1)0n n---=1n ≤1N <ε, 即1(1)n n x n--=∈U (0, ε). 一般地,对数列极限有以下定义.定义2 若对任何ε>0,总存在正整数N ,当n >N 时,|x n -a |< ε,即(,)n x U a ε∈,则称数列{x n }收敛,a 称为数列{x n }当n →∞时的极限,记为lim n n x →∞=a 或 x n →a (n →∞).若数列{x n }不收敛,则称该数列发散.注 定义中的正整数N 与ε有关,一般说来,N 将随ε减小而增大,这样的N 也不是惟一的.显然,如果已经证明了符合要求的N 存在,则比这个N 大的任何正整数均符合要求,在以后有关数列极限的叙述中,如无特殊声明,N 均表示正整数.此外,由邻域的定义可知,(,)n x U a ε∈等价于|x n -a |<ε.“数列{x n }的极限a ”的几何解释:将常数a 及数列x 1,x 2,x 3,…,x n ,…在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域,即开区间(a -ε, a +ε),如图1-33所示.图1-33因不等式 |x n -a |<ε 与不等式 a -ε<x n <a +ε 等价,所以当n >N 时,所有的点x n 都落在开区间(a -ε, a +ε)内,而只有有限个点(至多只有N 个点)在这区间以外.为了以后叙述的方便,这里介绍几个符号,符号“∀”表示“任取”、“对于所有的”或“对于每一个”;符号“∃”表示“存在”;符号“m ax {X }”表示数集X 中的最大数;符号“min{X }”表示数集X 中的最小数.例1 证明 1lim2nn →∞=0.证∀ε>0(不妨设ε<1),要使102n -=12n <ε,只要2n>1ε,即n >(ln 1ε)/ln2. 因此,∀ε>0,取N =[(ln 1ε)/ln2],则当n >N 时,有102n -<ε.由极限定义可知1lim2nn →∞=0.例2 证明 1πlimcos4n n n →∞=0. 证 由于1πcos 04n n -=1πcos 4n n ≤1n ,故∀ε>0,要使1πcos 04n n -<ε,只要1n<ε,即n >1ε. 因此,∀ε>0,取N =1ε⎡⎤⎢⎥⎣⎦,则当n >N 时,有1πcos04n n -<ε.由极限定义可知 1πlim cos 4n n n →∞=0. 用极限的定义来求极限是不太方便的,在以后的学习中,我们将逐步介绍其他求极限的方法.二、收敛数列的性质1. 唯一性定理1 若数列收敛,则其极限唯一.证 假设数列{x n }收敛,但极限不唯一:lim n n x →∞=a ,lim n n x →∞=b ,且a ≠b ,不妨设a <b ,由极限定义,取ε=2b a -,则∃N 1>0,当n >N 1时,|x n -a |<2b a-,即 32a b -<x n <2a b+, (6) ∃N 2>0,当n >N 2时,|x n -b |<2b a-,即 2a b +<x n <32b a-, (7) 取N =m ax {N 1,N 2},则当n >N 时,(6)、(7)两式应同时成立,显然矛盾.该矛盾证明了收敛数列{x n }的极限必唯一.2. 有界性定义3 设有数列{x n },若∃M ∈R ,M >0,使对一切n =1,2,…,有|x n |≤M ,则称数列{x n }是有界的,否则称它是无界的.对于数列{x n },若∃M ∈R ,使对n =1,2,…,有x n ≤ M ,则称数列{x n }有上界;若∃M ∈R ,使对n =1,2,…,有x n ≥M ,则称数列{x n }有下界.显然,数列{x n }有界的充要条件是{x n }既有上界又有下界.例3 数列211n ⎧⎫⎨⎬+⎩⎭有界;数列{n 2}有下界而无上界;数列{-n 2}有上界而无下界;数列{(1)1nn --}既无上界又无下界.定理2 若数列{ x n }收敛,则数列{x n }有界.证 设lim n n x →∞=a ,由极限定义,∀ε>0,且ε<1,∃N >0,当n >N 时,|x n -a |<ε<1,从而|x n |<1+|a |.取M =m ax {1+|a |,|x 1|,|x 2|,…,|x N |},则有|x n |≤M 对一切n =1,2,3,…,成立,即{ x n }有界.定理2 的逆命题不成立,例如数列{(1)n-}有界,但它不收敛.3. 保号性定理3 若lim n n x →∞=a ,a >0(或a <0),则∃N >0,当n >N 时,x n >0(或x n <0).证 设a >0,由极限定义 ,对ε=2a >0,∃N >0,当n >N 时,|x n -a |<2a , 即2a <x n <32a ,故当n >N 时,x n >2a>0.类似可证a <0的情形.推论 设有数列{x n },∃N >0,当n >N 时,0n x ≥(或0n x ≤),若lim n n x →∞=a ,则必有a ≥0( 或a ≤0 ).推论中,若x n >0(或x n <0),我们只能推出a ≥0(或a ≤0),而不能推出a >0(或a <0).例如1n x n=>0,但lim n n x →∞=lim n →∞1n =0.4. 收敛数列与其子列的关系定义4 在数列{x n }中保持原有的次序自左向右任意选取无穷多个项构成一个新的数列,称它为{x n }的一个子列.在选出的子列中,记第一项为1n x ,第二项为2n x ,…,第k 项为k n x ,…,则数列{x n }的子列可记为{k n x }.k 表示k n x 在子列{k n x }中是第k 项,n k 表示k n x 在原数列{x n }中是第n k 项.显然,对每一个k ,有n k ≥k ;对任意正整数h ,k ,如果h ≥k ,则n h ≥n k ;若n h ≥n k ,则h ≥k由于在子列{k n x }中的下标是k 而不是n k ,因此{k n x }收敛于a 的定义是:∀ε>0,∃K >0,当k >K 时,有|kn x -a |<ε.这时,记为lim k n k x →∞=a .定理4 若lim n n x →∞=a ,则{ x n }的任何子列{k n x }都收敛,且都以a 为极限.证 由lim n n x →∞=a ,∀ε>0,∃N >0,当n >N 时,有|x n -a |<ε.今取K =N ,则当k >K 时,有n k >n K =n N ≥ N ,于是|k n x -a |<ε.故有 lim k n k x →∞=a .定理4用来判别数列{x n }发散有时是很方便的.如果在数列{x n }中有一个子列发散,或者有两个子列不收敛于同一极限值,则可断言{x n }是发散的.例4 判别数列πsin,N 8n n x n ⎧⎫=∈⎨⎬⎩⎭的收敛性. 解 在{x n }中选取两个子列:8πsin,N 8k k ⎧⎫∈⎨⎬⎩⎭,即8π16π8πsin ,sin ,sin ,888k ⎧⎫⋅⋅⋅⋅⋅⋅⎨⎬⎩⎭; ()164πsin ,N 8k k +⎧⎫∈⎨⎬⎩⎭,即()164π20πsin ,sin ,88k +⎧⎫⋅⋅⋅⋅⋅⋅⎨⎬⎩⎭. 显然,第一个子列收敛于0,而第二个子列收敛于1,因此原数列πsin8n ⎧⎫⎨⎬⎩⎭发散.课堂总结1.数列极限的定义:lim 0,,n n n x a N n N x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.。