当前位置:文档之家› 中央空调控制系统设计开题报告

中央空调控制系统设计开题报告

毕业设计(论文)开题报告
电子信息与电气工程系(院)2010届
题目中央空调控制系统设计
THE DESIGNOFCONTROL
SYSTEM FOR CENTRAL AIR-CONDITIONING
课题类型应用研究课题来源教师指定
学生姓名学号
专业自动化班级
指导教师职称
填写日期的和意义
中央空调控制系统的设计对自动化专业的学生而言是与时俱进、涵盖知识面广的课题。本课题研究的主要内容是学习集中式空调系统的各个环节,掌握空调系统原理、控制要求及性能指标;通过热力学和传热学知识,利用机理法创建空调房间数学模型,为控制方案的确立和控制参数调整奠定基础;利用单回路闭环控制系统实现空调房间温度控制,并用工程整定法整定PID控制器参数以达到良好效果;利用仿真软件仿真系统有各种干扰信号时的响应特性;应用智能控制知识设计模糊控制器,并用仿真软件对控制效果进行仿真研究。
空调系统是现代建筑中的主要设备系统,是楼宇自动控制系统的主要监控对象之一。空调系统耗能在建筑总能耗中占40%左右,通过楼宇自动控制系统实现其节能运行,意义重大。空调控制系统是要对室内温湿度等参数进行控制,使之很好地跟踪设定值,同时尽可能减少能源消耗,达到节能的目的。而其对象是不可预知的,如人员的多少、设备的发热量,空调系统又具有很大的滞后特性,系统中又有很多的检测、控制点。空调系统在运行过程中,控制系统要对其进行实时调控,对空调系统的控制系统性能要求较高。所以要达到很好的控制效果,又要节能,就必须设计一个良好的控制系统。目前空调系统应用越来越广泛,几乎所有的新建建筑物都有空调系统,人们对空调舒适度的要求越来越高,同时,由于空调耗能大,节能问题日益突出,所以研究空调系统的控制具有广泛的意义。对不同的工程,空调系统虽然有所不同,控制方案也会有所不同,但其基本的分析方法、原理是相同的。故本次设计对于类似项目还具有普遍意义。
良好的控制器的设计和控制参数的调节有赖于系统的数学模型,所以近年来国内外学者都热衷于建立空调系统的模型。早在1985年美国学者ClarkDR等就已经在ASHRAE上发表文章,建立了送风管道的数学模型。1900年Underwood和Crawford合作,依据非线性控制理论的发展,在大量实验的基础上提出了水加热器的数学模型。同一时期,Maxwell也在实验的基础上获得了冷却器的模型。由于国内外建筑风格、空气参数、空气质量及室内空气控制的指标要求不同,所以国外对空调系统建立的数学模型不完全适合我国的空调系统,但是他们建模的一些方法及思想对我们研究空调系统很有价值。
伴随着计算机控制技术的发展,世界上HVAC---供热通风与空调工程(Heating Ventilation and Air Conditioning)系统的控制从五十年代就开始采用气动仪表控制系统,六十年代改进为电动单元组合仪表,七十年代采用小型专用微型计算机进行集中式控制系统,直到1984年。美国哈特福德市第一幢采用微型计算机集散式控制系统大厦的出现,标志着智能建筑时代的开始。集散式(即集中管理,分散控制)自控系统,目前技术趋于成熟,主要技术特征是采用了DDC(Direct Digital Control)。
二、文献综述(国内外相关研究现况和发展趋向)
随着人们生活水平的不断提高,智能大厦的不断涌现,智能建筑得到了迅猛发展,并已成为21世纪建筑业的发展主流。所谓智能建筑就是给传统建筑加上“灵敏”的神经系统和“聪明”的头脑,以提高人们生产、生活环境,给人们带来多元化信息和安全、舒适、便利的生活条件。而中央空调系统是智能建筑中楼宇自动化的一个非常重要的组成部分,在各个行业各个部门中得到了广泛的应用。一方面,在空调系统中,通过对空气的净化和处理,使其温度、湿度、流动速度、新鲜度及洁净度等指标均符合场所的使用要求,以满足人们的生产、生活需要;另一方面,据统计,空调系统的能耗通常占楼宇能耗的60%以上,空调系统要以最小的能耗达到最佳的运行效果,即满足国际上最新的“能量效率”的要求。
中央空调系统是楼宇控制系统监控的重点,往往占总监控点的60%以上,其投资超过水电等其余监控系统的总和。中央空调系统管路复杂,运行工况多变,是建筑物能耗大户,一般耗电占建筑物总用电量的40%以上。
随着科技的飞速发展,智能控制的应用范围在逐渐拓展,并且引起了空调控制方案的变革,同时,信息技术的飞速发展,引起了自动化系统结构的变革,逐步形成了以网络自动化系统为基础的控制系统。而现场总线就是顺应这一形势发展起来的新技术。现场总线中的Lonworks总线技术为智能控制的实施提供了广泛的发展空间,促使智能控制向着分散化,网络化方向发展,并且智能控制由于不依赖于系统的精确模型,而且具有超调小、调节迅速、上升时间短和很好的鲁棒性的特点,使得智能控制应用非常的广泛。
作为控制系统中的主要单元控制器,目前国内外主要采用的是常规PID控制,因其控制简单、实用、成本低、技术成熟、易于实现、参数调整方便,并且具有一定的鲁棒性---系统的健壮性,在空气调节中的应用比较广泛。1982年Shavit和Brandt等对由控制阀门和执行器实现温度和湿度控制的不同特性做了研究。1984年Brandt和Shavit对PID控制的废弃温度控制系统的单位阶跃响应做了仿真研究。1995年Kalman等人将PID控制用于压缩机和蒸发器的电极速度调节,以实现制冷去湿,并建立了系统的数学模型以及PID算法的三个参数的解析整定方法,同时给出了系统的两种控制策略。实际上,现在大多数空调系统都是采用PID控制。虽然PID控制在空气调节中广泛使用,但是由于PID算法只有在系统模型参数不随时间变化的情况下才取得理想效果。当一个已经调好参数的PID控制器被应用于另外一个具有不同模型参数的系统时。系统性能就会变差,甚至不稳定。再加上空调系统的高度非线性以及温湿度之间的强耦合关系,研究者们又转向其他高级控制方法,如最优控制、自适应控制、模糊控制及神经网络控制。
国内的许多学者也做了大量的的空调建模方面工作。香港理工大学王盛卫等在1999年通过分析空调系统各个环节的热力学特性,用RC模型代替空调系统各个环节的模型,此模型便于实验分析。南京建筑工程学院的王建明工程师在2002年通过对空调房间的热力学特性分析给出了变风量系统空调房间的数学模型。随着控制系统的发展,人们开始关注基于现代智能控制理论的各环节模型,建立了基于人工神经网络的表冷器模型。同济大学孟华老师在2004年从热力学和传热传质的基本原理出发,以TANSYS为仿真平台,建立了表冷器的数学模型。
相关主题