当前位置:文档之家› 图像匹配+图像配准+图像校正

图像匹配+图像配准+图像校正

图像匹配
图像匹配是指通过一定的匹配算法在两幅或多幅图像之间识别同名点,如二维图像匹配中通过比较目标区和搜索区中相同大小的窗口的相关系数,取搜索区中相关系数最大所对应的窗口中心点作为同名点。

其实质是在基元相似性的条件下,运用匹配准则的最佳搜索问题。

图像匹配主要可分为以灰度为基础的匹配和以特征为基础的匹配。

1、灰度匹配
灰度匹配的基本思想:以统计的观点将图像看成是二维信号,采用统计相关的方法寻找信号间的相关匹配。

利用两个信号的相关函数,评价它们的相似性以确定同名点。

灰度匹配通过利用某种相似性度量,如相关函数、协方差函数、差平方和、差绝对值和等测度极值,判定两幅图像中的对应关系。

最经典的灰度匹配法是归一化的灰度匹配法,其基本原理是逐像素的把一个以一定大小的实时图像窗口的灰度矩阵,与参考图像的所有可能的窗口灰度阵列,按某种相似性度量方法进行搜索比较的匹配方法,从理论上说就是采用图像相关技术。

利用灰度信息匹配方法的主要缺陷是计算量太大,因为使用场合一般都有一定的速度要求,所以这些方法很少被使用。

现在已经提出了一些相关的快速算法,如幅度排序相关算法,FFT相关算法和分层搜索的序列判断算法等。

2、特征匹配
特征匹配是指通过分别提取两个或多个图像的特征(点、线、面等特征),对特征进行参数描述,然后运用所描述的参数来进行匹配的一种算法。

基于特征的匹配所处理的图像一般包含的特征有颜色特征、纹理特征、形状特征、空间位置特征等。

特征匹配首先对图像进行预处理来提取其高层次的特征,然后建立两幅图像之间特征的匹配对应关系,通常使用的特征基元有点特征、边缘特征和区域特征。

特征匹配需要用到许多诸如矩阵的运算、梯度的求解、还有傅立叶变换和泰勒展开等数学运算。

常用的特征提取与匹配方法有:统计方法、几何法、模型法、信号处理法、边界特征法、傅氏形状描述法、几何参数法、形状不变矩法等。

基于图象特征的匹配方法可以克服利用图象灰度信息进行匹配的缺点,由于图象的特征点比较象素点要少很多,大大减少了匹配过程的计算量;同时,特征点的匹配度量值对位置
的变化比较敏感,可以大大提高匹配的精确程度;而且,特征点的提取过程可以减少噪声的影响,对灰度变化,图象形变以及遮挡等都有较好的适应能力。

所以基于图象特征的匹配在实际中的应用越来越广泛。

所使用的特征基元有点特征(明显点,角点,边缘点等),边缘线段等。

3、比较
特征匹配与灰度匹配的区别:灰度匹配是基于像素的,特征匹配则是基于区域的,特征匹配在考虑像素灰度的同时还应考虑诸如空间整体特征、空间关系等因素。

特征是图象内容最抽象的描述,与基于灰度的匹配方法相比,特征相对于几何图象和辐射度影响来说更不易变化,但特征提取方法的计算代价通常较大,并且需要一些自由参数和事先按照经验选取的阀值,因而不便于实时应用。

同时,在纹理较少的图象区域提取的特征的密度通常比较稀少,使局部特征的提取比较困难。

另外,基于特征的匹配方法的相似性度量也比较复杂,往往要以特征属性、启发式方法及阀方法的结合来确定度量方法。

图像配准
图像配准就是将不同时间、不同传感器(成像设备)或不同条件下(天候、照度、摄像位置和角度等)获取的两幅或多幅图像进行匹配、叠加的过程,它已经被广泛地应用于遥感数据分析、计算机视觉、图像处理等领域。

上述配准技术的流程如下:首先对两幅图像进行特征提取得到特征点;通过进行相似性度量找到匹配的特征点对;然后通过匹配的特征点对得到图像空间坐标变换参数:最后由坐标变换参数进行图像配准。

而特征提取是配准技术中的关键,准确的特征提取为特征匹配的成功进行提供了保障。

因此,寻求具有良好不变性和准确性的特征提取方法,对于匹配精度至关重要。

图像配准-图像配准的方法
基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。

特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。

局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。

可以用这些局部特征之间的关系描述全局特征。

通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。

由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特
征提取方法的计算代价通常较大,不便于实时应用。

特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。

对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。

特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。

因此,在图像配准领域得到了广泛应用。

基于特征的图像配准方法有两个重要环节:特征提取和特征配准。

医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。

与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。

基于统计的配准方法通常是指最大互信息的图像配准方法。

基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。

当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。

由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。

然后进行采样、变换、插值、优化从而达到配准的目的。

基于互信息的配准技术属于基于像素相似性的方法。

它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。

基于互信息只依赖于图像本身的信息,不需要对图像进行特征点提取和组织分类等预处理,是一种自动而有效的配准算法。

该算法可靠,对图像中的几何失真、灰度不均匀和数据的缺失等不敏感。

不依赖于任何成像设备,可应用于多模态医学图像配准。

基于互信息的图像配准也有其缺点,它运算量大,对噪声敏感,要求待配准图像间联合概率分布函数必须是严格正性的。

图像校正
图像校正定义
图像校正是指对失真图像进行的复原性处理。

引起图像失真的原因有:成象系统的象差、畸变、带宽有限等造成的图象失真;由于成象器件拍摄姿态和扫描非线性引起的图象几何失真;由于运动模糊、辐射失真、引入噪声等造成的图像失真。

图象校正的基本思路是,根据图像失真原因,建立相应的数学模型,从被污染或畸变的图象信号中提取所需要的信息,沿着使图象失真的逆过程恢复图象本来面貌。

实际的复原过
程是设计一个滤波器,使其能从失真图象中计算得到真实图象的估值,使其根据预先规定的误差准则,最大程度地接近真实图象。

图像校正分类
图像校正主要分为两类:几何校正和灰度校正。

图象几何校正的思路是通过一些已知的参考点,即无失真图象的某些象素点和畸变图象相应象素的坐标间对应关系,拟合出上述多项式中的系数,并作为恢复其它象素的基础。

几何校正的基本方法是:首先建立几何校正的数学模型;其次利用已知条件确定模型参数;最后根据模型对图像进行几何校正。

具体操作通常分两步:
①对图像进行空间坐标变换;首先建立图像像点坐标(行、列号)和物方(或参考图)对应点坐标间的映射关系,解求映射关系中的未知参数,然后根据映射关系对图像各个像素坐标进行校正;
②确定各像素的灰度值(灰度内插)。

灰度校正方法
灰度校正方法的分类:
根据图像不同失真情况以及所需的不同图像特征可以采用不同的修正方法。

通常使用的主要有三种:
(1)灰度级校正。

针对图像成像不均匀如曝光不均匀,使图像半边暗半边亮,对图像逐点进行不同程度的灰度级校正,目的是使整幅图像灰度均匀。

(2)灰度变换。

针对图像某一部分或整幅图像曝光不足使用灰度变换,其目的是增强图像灰度对比度。

(3)直方图修正。

能够使图像具有所需要的灰度分布,从而有选择地突出所需要的图像特征,来满足人们的需要。

相关主题