超分子化学综述摘要:超分子化学是化学领域一个崭新的学科分支,本文综述了分子识别和自组装的有关内容以及和超分子化学的分类,并指出了超分子化学对科学理论研究的重要意义和广阔的应用前景。
关键字:超分子化学分子识别自组装“超分子”一词早在20世纪30年代已经出现,但在科学界受到重视却是50年之后了。
超分子化学可定义为“超出分子的化学”,是关于若干化学物种通过分子间相互作用结合在一起所构成的,具有较高复杂性和一定组织性的整体的化学。
在这个整体中各组分还保持某些固有的物理和化学性质,同时又因彼此间的相互影响或扰动而表现出某些整体功能[1]。
超分子体系的微观单元是由若干乃至许许多多个不同化合物的分子或离子或其他可单独存在的具有一定化学性质的微粒聚集而成。
聚集数可以确定或不确定,这与一分子中原子个数严格确定具有本质区别,把多个组分的基本微观单元聚集成“超分子”的凝聚力是一些(相对于共价键)较弱的作用力。
如范氏力(含氢键)、亲水或憎水作用等[2]。
1967年,Charles Pedersen偶然发现了冠醚这种新型的大分子化合物,十几年后,一个崭新的化学领域——超分子化学终于诞生了。
进入90年代后,Surpramolecular Chemistry 杂志的创立说明超分子化学作为化学学科的一个独立的分支,像高分子化学一样,已经得到世界各国化学家的普遍认同。
在国内,一些高校和科研机构已做了相当多的工作,说明超分子化学正在迅猛发展[3]。
本文对超分子化学作了简单的综述。
1.超分子稳定形成的因素[4]超分子稳定形成的因素,可从能量降低因素、熵增加因素及锁和钥匙原理来分析,通过这些分析,可加深对超分子和超分子化学的理解和认识,这比将超分子中分子间的结合力简单归结为非共价键更为具体、明确。
2.分子识别和自组装在超分子化学研究中,两个最重要的科学问题是分子识别和分子自组装、分子间多种弱相互作用的加合效应和协同作用。
分子识别是由于不同分子间的一种特殊的、专一的相互作用,它既满足相互结合的分子间的空间要求,也满足分子间各种次级键力的匹配,体现出锁和钥匙原理。
在超分子中,一种接受体分子的特殊部位具有某些基团,正适合与另一种底物分子的基团相结合。
当接受体分子和底物分子相遇时,相互选择对方,一起形成次级键;或者接受体分子按底物分子的大小尺寸,通过次级键构筑起适合底物分子居留的孔穴的结构。
所以分子识别的本质就是使接受体和底物分子间有着形成次级键的最佳条件,互相选择对方结合在一起,使体系趋于稳定。
自组装是自然界生物系统的一类基本属性,如DNA和RNA 的双螺旋结构、多肽和蛋白质的二级及高级结构、生物膜的形成与稳定、酶的高级结构与功能发挥等,都是多种不同弱相互作用加合协同的结果。
超分子自组装是指在平衡条件下相同或不同分子间通过非共价键弱相互作用自发构成具有特种性能的长程有序的超分子聚集体的过程[5]。
超分子自组装是指一种或多种分子依靠分子间的相互作用自发地结合起来,形成分立的或伸展的超分子。
由分子组成的晶体,也可看作识分子通过分子间作用力组装成的一种超分子。
分子识别和超分子自组装的结构化学内涵体现在电子因素和几何因素两个方面,前者使分子间的各种作用力得到充分发挥,后者适应于分子的几何形状和大小,能互相匹配,使在自组装时不发生大的阻碍。
分子识别和超分子自组装是超分子化学的核心内容。
3.超分子化合物的分类[6]3.1杂多酸类超分子化合物杂多酸是一类金属一氧簇合物,一般呈笼型结构,是一类优良的受体分子,它可以与无机分子、离子等底物结合形成超分子化合物。
作为一类新型电、磁、非线性光学材料极具开发价值[7],有关新型Keg-gin和Dawson型结构的多酸超分子化合物的合成及功能开发日益受到研究者的关注。
杜丹等[8]合成了Dawson型磷钼杂多酸对苯二酚超分子膜及吡啶Dawson型磷钼多酸超分子膜修饰电极,发现该膜电极对抗坏血酸的催化峰电流与其浓度在0.35~0.50mol/L范围内呈良好的线性关系。
毕丽华等[8]合成了多酸超分子化合物,首次发现了杂多酸超分子化合物溶于适当有机溶剂中可表现出近晶相液晶行为。
3.2 多胺类超分子化合物由于二氧四胺体系可有效地稳定如Cu(Ⅱ)和Ni(Ⅱ)等过渡金属离子的高价氧化态,若二氧四胺与荧光基团相连,则光敏物质荧光的猝灭或增强就与相连的二氧四胺配合物与光敏物质间是否发生电子转移密切相关,即通过金属离子可以调节荧光的猝灭或开启,起到光开关的作用。
大环冠醚由于其自组装性能及分子识别能力而引起人们广泛的重视。
近来,冠醚又成为在超分子体系中用于建构主体分子的一种重要的建造单元。
李晖等[9]利用了冠醚分子的分子识别能力及蒽醌分子的光敏性,设计合成了一种新的氮杂冠醚取代蒽醌分子,并以该分子作为主体分子,以稀土离子作为客体构成超分子体系,并研究了超分子体系内的能量转移过程。
3.3 卟啉类超分子化合物卟啉及其金属配合物、类似物的超分子功能已应用于生物相关物质分析,展示了更加诱人的前景,并将推动超分子络合物在分析化学中应用的深入开展。
3.4 树状超分子化合物树状大分子(dendrimer)是20世纪80年代中期出现的一类新的合成高分子。
薄志山等[10]首次合成以阴离子卟啉作为树状分子的核,树状阳离子为外层,基于卟啉阴离子与树状阳离子之间静电作用力来组装树状超分子复合物。
镧系金属离子(Ln3+)如Tb3+和Eu3+的发光具有长寿命(微秒级)、窄波长、对环境超灵敏性等特点,是一种优良的发光材料,但镧系金属离子在水溶液中只有很弱的发光。
3.5 液晶类超分子化合物侧链液晶聚合物具有小分子液晶和高分子材料的双重特性,晏华在《超分子液晶》[11]中详细讨论了超分子和液晶的内在联系,探讨了超分子液晶分子工程和超分子液晶热力学。
李敏等[12]从分子设计的角度出发,合成了以对硝基偶氮苯为介晶基团的丙烯酸类液晶聚合物,液晶基元上作为电子受体的硝基和作为电子给体的烷氧基可与苯环、N-N之间形成一个离域的π电子体系。
初步的研究表明:电晕极化制备的该类聚合物的取向膜具有二阶非线性光学性质。
3.6 酞菁类超分子化合物田宏健等[13]合成了带负电荷取代基的中位四(4′-磺酸基苯基)卟啉及锌络合物和带正电荷取代基2,9,16,23 四[(4′-N,N,N三甲基)苯氧基]酞菁季铵碘盐及锌络合物,并用Job 氏光度滴定的方法确定了它们的组成,为面对面的杂二聚体或三明治式的杂三聚体超分子排列。
发现在超分子体系中卟啉与酞菁能互相猝灭各自的荧光,用纳秒级的激光闪光光解技术观察到卟啉的正离子在600~650 nm 和酞菁负离子自由基在550~600 nm的瞬态吸收光谱。
结果表明在超分子体系中存在分子间的光诱导电子转移过程。
4. 结语非生物主体分子冠醚、环糊精、杯芳烃是超分子化学领域中的里程碑分子,超分子化学的理论和方法在有机化学等各个化学分支领域中应用也越来越广泛,不但如此,作为超分子化学起源的主客体化学将与有机合成化学、配位化学和生物化学互相促进,为生命科学、能源科学等共同做出巨大贡献。
分子识别应用于纳米材料组装中的研究是近年来在化学、生物学和材料学领域备受关注的方向之一。
目前该领域仍处于一个高速发展的局面,除了发展解释和指导该组装过程的相应理论外,获得更多具有实际功能的组装体将是该领域的一个重要研究方向。
可以预期,超分子化学必将展现丰硕的研究成果和更广阔的应用前景。
参考文献:[1]吴世康.超分子光化学前景[J].感光化学与光化学,1994,12(4),332-341.[2]孙得志,朱兰英,宋兴民.超分子化学、选择性分子间力和若干化学研究领域[J].聊城师院学报(自然科学版),1998,11(2),27-33.[3]李文林,李梅兰.超分子化学的现状及进展[J].广东化工.2009,36(9),80-81.[4]Tsuchiya H. M. Keller K. H. Bioengineering is a new era beginning[J]. CEP, 1965, 61(7), 112-119.[5]Sherrington D C, Taskinen KA. Self2assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions[J]. Chem Soc Rev, 2001, 30, 83-93.[6]李文林,李梅兰.超分子化学的现状及进展[J].广东化工.2009,36(9),80-81.[7]杜丹,王升富,黄春保.吡啶2Dawson 型磷钼杂多酸超分子薄膜修饰电极分析[J].测试学报,2001,20(4):29-32.[8]毕丽华, 黄如丹, 王恩波等. 多酸超分子化合物的合成及液晶性质[J]. 高等学校化学学报,1999,20 (9):1352-1353.[9]苏循成,周志芬,林华宽,等.功能取代二氧四胺大环超分子配合物的溶液热力学性质研究[J].南开大学学报:自然科学版,2000,33 (4):57-61.[10]薄志山,张希,杨梅林.基于静电吸引的自组装树状超分子复合物[J].高等学校化学学报,1997,18(2), 326-328.[11]晏华.超分子液晶[M].北京:科学出版社,2000, 1-230.[12]李敏,周恩乐,徐纪平.含对硝基偶氮苯侧基的丙烯酸酯类液晶聚合物的超分子结构[J].高等学校化学学报,1995,16(4):635-638.[13]田宏健,周庆复,沈淑引.酞菁卟啉超分子的形成及光致电子转移过程[J].物理化学学报,1996,12 (1):44-48.。