当前位置:文档之家› 2008年浙江省杭州市各类高中招生文化考试答案

2008年浙江省杭州市各类高中招生文化考试答案

2008年浙江省杭州市各类高中招生文化考试数学参考答案及评分标准一. 选择题(每小题3分, 共30分)二. 填空题(每小题4分, 共24分) 11. 5.0-; 12+-等, 答案不惟一12.BCD △ CAD △; 9∶16 或BCD △ BAC △; 9∶25或CAD △ BAC △; 16∶2513. 说得不对, 不光看图象, 要看到纵坐标的差距不是很大. 14. 3215.r r 34;5 16. 4或7或9或12或15三. 解答题(8小题共66分) 17. (本题6分) 方程组如下:⎩⎨⎧=+=+944235y x y x , ······················································································· 4分可以用代入消元和加减消元法来解这个方程组. ······························································· 2分 18. (本题6分)(1) 对应关系连接如下: ······························································································ 4分(2) 当容器中的水恰好达到一半高度时, 函数关系图上t 的位置如上: ····················· 2分 19. (本题6分)凸八边形的对角线条数应该是20. ······························································ 2分思考一: 可以通过列表归纳分析得到:思考二: 从凸八边形的每一个顶点出发可以作出5(8-3)条对角线, 8个顶点共40条, 但其一条对角线对应两个顶点, 所以有20条对角线. ······················································· 4分 (如果直接利用公式: 2)3(-n n 得到20而没有思考过程, 全题只给3分) 20. (本题8分)作图如下, BCD ∠即为所求作的γ∠.········· 图形正确4分, 痕迹2分, 结论2分21. (本题8分)(1) 补全表格: ········································································································· 4分(2) 折线图: ··············································································································· 4分22. (本题10分)(1) 将点132P ⎛⎫ ⎪⎝⎭,代入函数关系式t a y =, 解得23=a , 有ty 23=将1=y 代入ty 23=, 得23=t , 所以所求反比例函数关系式为33()22y t t =≥; ········ 3分 再将)1,(23代入kt y =, 得32=k ,所以所求正比例函数关系式为23(0)32y t t =≤≤. ··············································································································································· 3分 (2) 解不等式4123<t, 解得 6>t , 所以至少需要经过6小时后,学生才能进入教室. ························································· 4分 23. (本题10分)(1) ∵△ABC 是等腰△,CH 是底边上的高线,∴AC BC ACP BCP =∠=∠,, 又∵CP CP =, ∴△ACP ≌△BCP ,∴CBP CAP ∠=∠, 即CBF CAE ∠=∠; ······························································· 3分 (2) ∵BCF ACE ∠=∠, CBF CAE ∠=∠,BC AC =,∴△ACE ≌△BCF ,∴BF AE =; ··································································· 3分 (3) 由(2)知△ABG 是以AB 为底边的等腰△,∴ABG ABC S S ∆∆= 等价于AC AE =, 1)当∠C 为直角或钝角时,在△ACE 中,不论点P 在CH 何处,均有AC AE >,所以结论不成立;2)当∠C 为锐角时, =∠A -9021∠C ,而A CAE ∠<∠,要使AC AE =,只需使∠C =∠CEA ,此时,∠=CAE 180°–2∠C , 只须180°–2∠C <-9021∠C ,解得 60°<∠C < 90°. ·························· 4分(也可在CEA ∆中通过比较C ∠和CEA ∠的大小而得到结论) 24. (本题12分)(1) ∵ 平移2tx y -=的图象得到的抛物线F 的顶点为Q ,∴ 抛物线F 对应的解析式为:b t x t y +--=2)(. ···················································· 2分 ∵ 抛物线与x 轴有两个交点,∴0>b t . ······································································ 1分令0=y , 得-=t OB t b,+=t OC tb,∴ -=⋅t OC OB (|||||tb )( +t t b )|-=2|t 22|OA t tb == , 即22t t tb ±=-, 所以当32t b =时, 存在抛物线F 使得||||||2OC OB OA ⋅=. ······ 2分 (2) ∵BC AQ //, ∴ b t =, 得F : t t x t y +--=2)(,解得1,121+=-=t x t x . ······························································································· 1分 在∆Rt AOB 中,1) 当0>t 时,由 ||||OC OB <, 得)0,1(-t B , 当01>-t 时, 由=∠ABO tan 23=||||OB OA =1-t t , 解得3=t , 此时, 二次函数解析式为241832-+-=x x y ; ··························································· 2分 当01<-t 时, 由=∠ABO tan 23=||||OB OA =1+-t t , 解得=t 53, 此时,二次函数解析式为-=y 532x +2518x +12548. ······················································ 2分 2) 当0<t 时, 由 ||||OC OB <, 将t -代t , 可得=t 53-, 3-=t , (也可由x -代x ,y -代y 得到) 所以二次函数解析式为 =y 532x +2518x –12548或241832++=x x y . ····················· 2分。

相关主题