当前位置:文档之家› 申请基金项目申请表

申请基金项目申请表

项目编号:《课程论文》模拟基金资助项目申请书一、基本信息三、经费概算单位:万元(保留一位小数)四、立论依据1.国内外发展研究现状及发展动态分析氢能具有非常高的能量密度和极低的环境污染,对于洁净能源的利用开发是至关重要的。

电催化析氢反应是在金属电极表面放氢腐蚀的阴极过程,是在可逆氢燃料电池中产氢的重要过程。

硫化物是该系列反应中最具催化活性的无机材料材料,然而其高成本促使人们一直在寻找降低硫化物用量的方法。

迄今为止,业界还未能开发出降低硫化物用量且保持高电催化活性的技术。

该进展使得业界将能够在降低金属硫化物用量的同时极大地提高电催化析氢活性,为开发低成本、高性能电催化材料铺平了道路。

该研究发现有助于加深人们对复合结构材料中电荷极化行为和机制的认识,也对复合结构电催化剂的理性设计具有重要推动作用。

2.本项目的研究意义(需结合科学研究发展趋势来论述科学意义;或结合国民经济和社会发展中迫切需要解决的关键科技问题来论述其应用前景)氢能源作为高效洁净理想的二次能源已受到世界各国广泛的重视。

电解水制氢是实现大规模生产氢的重要手段降低电解能耗行之有效的方法就是降低氢的阴极析出电位,因此开发新型廉价的高催化性能析氢材料具有十分重要的意义。

近年来,通过不同复合的技术将一种或数种不溶性固体微粒,特别是由纳米技术得到的纳米颗粒掺杂到纳米层状材料中形成的复合镀层,表现出较高的催化性能为开发新型廉价高催化活性析氢材料提供了一种新的途径本文制备了电极通过性能测定阴极极化曲线、塔菲尔曲线和交流阻抗得到其动力学参数。

分别对和电极的催化性能进行比较,从而得到一种廉价高效的催化析氢材料。

3.主要参考文献目录(按照项目指南中参考文献标准格式填写)[1] Schlapbach L, Zuttel A. Hydrogene storage materials for mobile applications. Nature,2001,414:353-358.[2] Chen P, Xiong ZT, Luo JZ, Li JY, Tan KL. Interaction of hydrogen with metal nitrides and imides. Nature,2002,420:302- 304 .[3] Cioslowski J. Endohedral chemistry: electronic structures of molecules trapped inside theC60 cage. J Am Chem Soc,1991,113:4139 -4141.[4] Chen YJ, Wang QS, Zhu CL, Gao P, Yang QY, Wang TS, et al.Graphene/porous cobalt nanocomposite and its noticeable electrochemical hydrogen storage ability at room temperature. J Mater Chem 2012,22:5924-7.[5] Gao P, Wang Y, Yang SQ, Chen YJ, Xue Z, Wang LQ, et al.Mechanical alloying preparation of fullerene-like Co3C nanoparticles with high hydrogen storage ability. Int J Hydrogen Energy 2012,37:17126-30.[6] Yang SQ, Gao P, Bao D, Chen YJ, Wang LQ, Yang PP, et al.Mechanical ball-milling preparation of mass sandwiche-like cobalt-graphene nanocomposites with high electrochemical hydroge n storage ability. J Mater Chem 2013;1:6731-5 .[7] Novoselov KS, Geim AK, Moro zov SV, Jiang D, Zh ang Y,Dubono s SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666 -9 .[8] Tenne R, Margulis L, Genut M, Hodes G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992;3 60:444- 6 .[9] Margulis L, Salitra G, Tenne R, Talianker M. Nested fullerene-like structures. Nature 1993;365:113 - 4 .[10] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials . Nature 2006;442:282-6 .[11] Cohen RL, Wernick JH. Hydrogen storage materials: properties and possibilities. Science 1981;214:1081-7 .[12] Liu Y, Wang Y, Xiao L, Song D, Jiao L, Yuan H. Structure and electrochemical hydrogen storage behaviors of alloy Co2B. Electrochem Commun 2007;9 :925e 9 .[13] Wang YD, Ai XP, Yang HX. Electrochemical hydrogen storage behaviors of ultrafine amorphous Co -B alloy particles. Chem Mater 2004;16:5194- 7 .[14] Gao P, Yang SQ, Xue Z, Liu GB, Zhang GL, Wang LQ, et al. High energy balle milling preparation of Co-B amorphous alloy with high electrochemical hydrogen storage ability. J Alloy Compd 2012;539:90-6.[15] Cao YL, Zhou WC, Li XY, Ai XP, Gao XP, Yang HX. Electrochemical hydrogen storage behaviors of ultrafine Co-P particles prepared by direct ball emilling method. Electrochim Acta 2006;51:4285-90.[16] Jung HD, Alfantazi A. An electrochemical impedance spectroscopy and polarization study of nanocrystalline Co and Co- P alloy in 0.1 M H 2SO4esolution. Electrochim Acta2006;51:1806-14.[17] Cho KW, Kwon HS. Effects of electrodeposited Co and Co- P catalysts on the hydrogen generation properties from hydrolysis of alkaline sodium borohydride solution. Catal Today 2007;120:298-304 .[18] He G, Jiao LF, Yuan HT, Zhang YY, Wang YJ. Preparation and electrochemical hydrogen storage property of alloy CoSi. Electrochem Commun 2006;8 :1633 -8 .[19] Wang Y, Lee JM, Wang X. An investigation of the origin of the electrochemical hydrogen storage capacities of the ball emilled Co- Si composites. Int J Hydrogen Energy 2010;35:1669- 73.[20] Wang Q, Jiao L, Du H , Peng W, Song D, Wang Y, et al. Facile synthesis and electrochemical properties of Co-S composites as negative materials for alkaline recharge able batteries. Electrochim Acta 2011;5 6:1106 e 10.[21] Wang Q, Jiao L, Du H , Huan Q, Peng W, Song D, et al. Comparison of Co-S electrodes synthesize d via dif ferent methods for alkaline recharge able batteries. Electrochim Acta 2011;56:4992-5 .[22] Song D, Wang Q, Wang Y, Han Y, Li L, Liu G, et al. Liquid phase chemical synthesis of Co-S microspheres with novel structure and their electrochemical properties. J Power Sources 2010;195:7462 -5 .[23] Yao SM, Xi K, Li GR, Gao XP. Preparation and electrochemical properties of Co -Si3N4 nanocomposites. J Powe r Sources 2008;184:657-62.[24] Lamari FD, Levesque D. Hydrogen adsorption on functionalized graphene. Carbon 2011;4 9:5196-200 .[25] Lee S, Choi H, Chung YC. Effects of biaxial strains on the magnetic properties of Co-graphene heterojunctions. J Appl Phys 2012;111:11 3922.[26] Shukla AK, Venugopalan S, Hariprakash B. Nickel-based rechargeable batteries. J Power Sources 2001;1 00:125-48.[27] Zhang YH, Guo L, Liu K, He L, Chen JP. Synthesis of uniform clew-like cobalt sulfide nanochains by mild solution chemical route and their magnetic property. Rare Metal Mat Eng 2009;38:1003-6 .[28] Hong K. The development of hydrogen storage alloys and the progress of nickel hydride batteries. J Alloys Compd 2001;321:307-13.[29] Chung SR, Wang KW, Teng MH, Perng TP. Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder. Int J Hydrogen Energy 2009;34:1383-8.[30] Du HM, Jiao LF, Wang QH, Huan QN, Peng WX, Song DW,et al. Selenium: another metalloid beneficial for the electrochemical performance of Co electrode in alkaline rechargeable batteries. J Power Sources 2011;1 96:10748-52.[31] Huang JY, Wu YK, Ye H Q. Allotropic transformation of cobalt induced by ball milling. Acta Mater 1996;44:1201-9.[32] Jachimowicz M, Fadeeva VL, Matyja H. High energy ball milling of Co89B11 powders. Nanostruct Mater1999;12:159-62.[33] Kubalova LM, Fadeeva VI, Sviridov IA. Structural transformations in Co87B13and Ni87B13 alloys during ball milling and influence of stacking faults in fcc Co on amorphous phase formation. Rev Adv Mater Sci 2008;18:360e 5.[34] Dong WJ, Wang XB, Li BJ, et al. Hydrothermal synthesis and structure evolution of hierarchical cobalt sulfide nanostructures. Dalt T 2011;40:243-8.[35] Yan JM, Huang HZ, Zhang J, Liu ZJ, Yang Y. A study of novel anode material CoS2 for lithium ion battery. J Power Sources 2005;146:26 4e 9 .[36] Gao P, Chen Y, Lv H, Li X, Wang Y, Zhang Q. Synthesis of CuO nanoribbon arrays with noticeable electrochemical hydrogen storage ability by a simple precursor dehydration route at lower temperature. Int J Hydrogen Energy 2009;3 4:3065-9 .[37] Chung SR, Wang KW, Perng TP. Electrochemical hydrogenation of crystalline Co powder. J Electrochem Soc 2006;153:11 28 e 31.[38] Wang Q, Jiao L, Du H, Peng W, Song D, Wang Y, et al. Electrochemical hydrogen storage property of Co-S alloy prepared by ball- milling method. Int J Hydrogen Energy2010;35:8357-62.五、研究内容、研究目标、拟解决的关键科学问题、创新点及预期成果1.研究内容用不同的方法制备硫化物,如水热法、化学沉积法、球磨法、超声法。

相关主题